

Second Five-Year Review Report

for

Peerless Plating Site

Muskegon Township Muskegon County, Michigan

July 2007

PREPARED BY:

United States Environmental Protection Agency Region 5 Chicago, Illinois

Approved by: Date:

Richard C. Karl, Director Superfund Division

U.S. EPA

7/12/07

Five-Year Review Report

Table of Contents

VIII.	Issues	18
	·	
	Technical Assessment Summary	
	the protectiveness of the remedy?	12
	Question C: Has any other information come to light that could call into question	1/
	Question B: Are the exposure assumptions, toxicity data, cleanup levels, and remed action objectives (RAOs) used at the time of the remedy selection still valid?	
	Question A: Is the remedy functioning as intended by the decision documents?	
V 11.	Technical Assessment Overtion A: Is the remody functioning as intended by the decision decuments?	
VII.	Site Inspection	
	Data Review	
	Document Review	
	Community Involvement	
	Administrative Components	
VI.	Five-Year Review Process	
V.	Progress Since the Last Five-Year Review	13
	System Operation/Operation and Maintenance	11
	Institutional Controls	
	Remedial Implementation	
	Remedy Selection	
IV.	Remedial Actions	
	Basis for Taking Action	6
	Initial Response	
	History of Contamination	
	Land and Resource Use	
	Physical Characteristics	
III.	Background	3
II.	Site Chronology	2
I.	Introduction	1
Five-Y	Year Review Summary Form	E-3
Execu	tive Summary	E-2
	•	
List of	Acronyms	E-1

Χ.	Protectiveness Statement(s)	19
XI.	Next Review	19
Tabl	les	
	Table 1 - Chronology of Site Events	
	Table 2 -Cleanup goals for the Site	
	Table 3 - Issues	
	Table 4 – Recommendations/Institutional Control Summary Table	
Attac	chments	
	Attachment 1 - Site Map	
	Attachment 2 - Documents Reviewed	
	Attachment 3 - ARARs	
	Attachment 4 - Baseline Groundwater Monitoring Results and well location map	
	Attachment 5 - Estimated Operation and Maintenance Costs	
	Attachment 6 – Five Year Review Newspaper Ad	

List of Acronyms

ARAR Applicable or relevant and appropriate requirement

CERCLA Comprehensive Environmental Response Compensation Liability Act

CIC Community Involvement Coordinator

DCE Dichloroethane

EPA Environmental Protection Agency
ESD Explanation of Significant Difference

HWD Hardware Distributors Inc. IC Institutional Controls

LTRA Long Term Remedial Action MCL Maximum Contaminant Level

MDNR Michigan Department of Natural Resources
MDEQ Michigan Department of Environmental Quality

mg/kg Milligram Per Kilogram

MWRC Michigan Water Resource Commission

NCP National Contingency Plan NPL National Priorities List O&M Operation and Maintenance

PCE Perchloroethylene

POTW Muskegon Waste Water Treatment Plant

ppb Parts Per Billion ppm Parts Per Million RA Remedial Action

RD/RA Remedial Design/Remedial Action
RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

RPM Remedial Project Manager

SRD Substantive Requirements Document

SVE Soil Vapor Extraction TCE Trichloroethylene

UST Underground Storage Tank

U.S. EPA United States Environmental Protection Agency

VOC Volatile Organic Chemical

Executive Summary

The remedy for the Peerless Plating Site in Muskegon, Michigan included four major components: 1) Demolition and disposal of the Peerless Plating building; 2) Air stripping and treatment of the volatile organic compounds in the groundwater followed by precipitation of inorganic compounds; 3) In-situ Vapor extraction of the organic compounds and stabilization of the inorganic compounds in the soil; 4) Institutional Controls. The trigger for the first Five Year Review was the actual start of construction in August 1997. The trigger for the second Five Year Review was the signature date of the last Five Year Review.

The assessment of this Five Year Review found that the remedy was constructed in accordance with the requirements of the Record of Decision (ROD). Two Explanations of Significant Difference (ESD) were issued, one in 1997 and one in 2001, to change soil cleanup standards and address treatment approaches for the soil. During the 1999 construction of the groundwater treatment system, previously unidentified soil contamination was discovered and found to be widespread in the subsurface both vertically and horizontally, over a large portion of the Site. It was also discovered that contaminated soils may also be present under an addition to the Hardware Distributor building directly adjacent to the Site. Because of the difficulties and expense of excavating soil below the water table and underneath a building addition, contaminated soils that contained concentrations greater than the cleanup levels specified in the 1997 ESD were only excavated to the water table and/or left under the building addition. Deed restrictions are required because soil and groundwater contaminant concentrations remain on Site and will exceed the cleanup criteria. The Peerless property will be limited to industrial/commercial use. Groundwater consumption or construction activities that could expose soils left in place will not be allowed. In March 2006, a third ESD was signed. This ESD changed the need for the use of some or all of the treatment requirements and also changed the groundwater treatment discharge point from the Little Black Creek to the Muskegon Waste Water Treatment Plant (POTW).

The remedy at the Peerless Plating Site currently protects human health and the environment in the short term because there are no current exposure pathways and the remedy appears to be functioning as designed and the groundwater cleanup goals are expected to be met. The removal of onsite contaminated soils has achieved the remedial objective to minimize the migration of contaminants to the groundwater and prevent direct contact with and ingestion of contaminants in the soil. Long-term protectiveness will not fully be achieved until effective institutional controls have been implemented and maintained.

Five-Year Review Summary Form

SITE IDENTIFICATION					
Site name (from V	VasteLAN): Peerles	s Plating			
EPA ID (from Wa	steLAN): MID0060	31348			
Region: 5	State: MI	City/County: Muskegon Township/Muskegon County			
		SITE STATUS			
NPL status: X Fin	nal 🗆 Deleted 🗆 O	ther (specify)			
Remediation stat	tus (choose all that a	pply): Under Construction X Operating Complete			
Multiple OUs?*	□ YES X NO	Construction completion date: 4/2001			
Has site been put	t into reuse? □ Y	ES X NO			
	R	REVIEW STATUS			
Lead agency: X	EPA □ State □ Tr	ibe			
Author name: Li	nda Martin				
Author title: Ren Manager	Author title: Remedial Project Manager Author affiliation: U.S. EPA				
Review period:**	* 07/2006 to 7/20	007			
Date(s) of site ins	spection: 10/2/200	06			
Type of review: X Post-SARA □ Pre-SARA □ NPL-Removal only □ Non-NPL Remedial Action Site □ NPL State/Tribe-lead □ Regional Discretion					
Review number: 1 (first) X 2 (second) \square 3 (third) \square Other (specify)					
Triggering action: Actual RA Onsite Construction Actual RA Start 04/1993 □ Construction Completion X Previous Five-Year Review Report □ Other (specify)					
Triggering action date (from WasteLAN): 09/25/2002					
Due date (five years after triggering action date): 09/25/2007					

^{* [&}quot;OU" refers to operable unit.]

** [Review period should correspond to the actual start and end dates of the Five-Year Review in WasteLAN.]

Five-Year Review Summary Form cont'd.

Issues:

- 1) Evidence of incomplete groundwater capture.
- PW-3 is shifting and needs to be replaced. PW-3 will be relocated to help optimize the pump and treatment system.
- 2) Optimization of the groundwater treatment system
- Institutional Controls need to be implemented Effective deed restrictions need to be added to the Site as well as the adjacent Hardware Distributor property to limit potential exposure to contaminants that remain in soils on Site and under an addition that was built on Hardware Distributor building. ICs must be considered in the areas where groundwater contamination has come to be located in order to protect human health and the environment.
- 3b) ICs must be monitored to assure long-term stewardship.

Recommendations and Follow-up Actions:

- 1). Evidence of incomplete groundwater capture. Move EW-3 and evaluate capture.
- Optimization of the groundwater treatment system. Continue to eliminate pre-treatment of the groundwater discharge.
- 3) EPA will prepare an IC Plan for title work, mapping of areas subject to restrictions, implementation of deed restrictions, and updating the O&M plan to monitor ICs in the long-term.

Protectiveness Statement(s):

The remedy at the Peerless Plating Site currently protects human health and the environment in the short term because there are no current exposure pathways and the remedy appears to be functioning as designed and the groundwater cleanup goals are expected to be met. The removal of onsite contaminated soils has achieved the remedial objective to minimize the migration of contaminants to the groundwater and prevent direct contact with and ingestion of contaminants in the soil. Long-term protectiveness will not fully be achieved until effective institutional controls have been implemented and maintained.

Other (Comments:
---------	-----------

None

Five-Year Review Report

I. Introduction

The purpose of Five Year Reviews is to determine whether the remedy at a Site is protective of human health and the environment. The methods, findings, and conclusions of reviews are documented in Five-Year Review reports. In addition, Five-Year Review reports identify issues found during the review, if any, and recommendations to address them.

The Agency is preparing this Five Year Review pursuant to CERCLA §121 and the National Contingency Plan (NCP). CERCLA §121 states:

If the President selects a remedial action that results in any hazardous substances, pollutants, or contaminants remaining at the Site, the President shall review such remedial action no less often than each five years after the initiation of such remedial action to assure that human health and the environment are being protected by the remedial action being implemented. In addition, if upon such review it is the judgment of the President that action is appropriate at such Site in accordance with section [104] or [106], the President shall take or require such action. The President shall report to the Congress a list of facilities for which such review is required, the results of all such reviews, and any actions taken as a result of such reviews.

The agency interpreted this requirement further in the National Contingency Plan (NCP); 40 CFR §300.430(f) (4) (ii) states:

If a remedial action is selected that results in hazardous substances, pollutants, or contaminants remaining at the Site above levels that allow for unlimited use and unrestricted exposure, the lead agency shall review such action no less often than every five years after the initiation of the selected remedial action.

The United States Environmental Protection Agency (U.S. EPA) Region 5 has conducted a Five Year Review of the remedial actions implemented at the Peerless Plating Site, located in Muskegon County, Michigan. This review was conducted by the Remedial Project Manager (RPM) for the entire Site from July 2006 to July 2007. This report documents the results of the review.

This is the second Five Year Review for the Peerless Plating Site. The triggering action for this statutory review is the signature date of the previous Five Year Review, September 25, 2002. This review is required because certain response actions are ongoing and hazardous substances, pollutants, or contaminants are or will be left on Site above levels that allow for unlimited use and unrestricted exposure.

II. Site Chronology

Table 1: Chronology of Site Events				
Event	Date			
Initial discovery of problem or contamination	1972			
State of Michigan Action	1972 - 1983			
NPL listing	1990			
U.S. EPA Removal actions (removal of liquids, lagoon, soil, demolition and seal sewers)	09/1983			
U.S. EPA Removal Action (remove additional liquids and sludge in underground storage tanks)	1/15/1991			
Fund-lead Remedial Investigation/Feasibility Study complete	06/1992			
ROD signature	09/21/1992			
Actual Fund-Lead RA start	4/1993			
Remedial Design complete	09/30/1996			
On-Site Construction Start (soil excavation)	08/01/1997			
Explanation of Significant Differences #1(to change soil cleanup levels)	08/7/1997			
Explanation of Significant Differences #2 (Off-Site treatment of soils and Institutional Controls)	04/05/2001			
Final inspection of pump and treat system	04/2002			
Construction completion date	04/04/2001			
First Five Year Review	09/25/2002			
Explanation of Significant Differences #3(to change the discharge point and adjustments to the treatment requirements)	03/15/2006			
Remediation System Evaluation	07/2006			
Site Inspection	10/2/2006			

III. Background

Physical Characteristics

The Peerless Plating Site is an abandoned electroplating facility located at 2554 Getty Avenue, Muskegon Township Muskegon, Michigan. The property covers approximately 1 acre in the southwest 1/4 of Section 33, T.10 N., and R. 16 W Muskegon Township. (See Attachment 1) The vicinity of the Site is urban light industrial and residential. Lake Michigan supplies drinking water for residences and businesses within a three mile radius of the Site. The Site is located adjacent to Little Black Creek.

Land and Resource Use

Electroplating operations were conducted at the Peerless Plating Site from 1937 to 1983. The current land use of the surrounding area is light urban industrial and residential. In establishing cleanup requirements for the Site, U.S. EPA considered the possibility of industrial redevelopment for the Site. The Site is fenced and contaminated soils were removed approximately to the depth of the water table and back filled with clean fill.

The groundwater aquifer underlying the Site occurs between 5 and 13 feet within lacustrine sands. Residents and businesses in the area receive their drinking water from Lake Michigan.

History of Contamination

Electroplating operations and processes conducted at Peerless Plating included copper, nickel, chromium, cadmium and zinc plating. Other associated activities such as burnishing, polishing, pickling, oiling, passivating, stress relieving, and dichromate dipping also occurred over the years of operation. Throughout the operations of the Site, waste was discharged to a seepage lagoon at the rear of the facility. While soil removal operations were conducted it was also discovered that a process pipe was not connected to anything and was discharging directly to groundwater.

Contaminants found in the soils included arsenic, antimony, beryllium, cadmium chromium, nickel, and cyanide. Contaminants in the groundwater included the same inorganics as well as acetone, benzene, 1,2, Dichloroethane, Trichloroethylene.

Initial Response

In 1972, a Stipulation was signed by the Michigan Water Resources Commission (MWRC), requiring Peerless Plating to monitor its waste discharge daily and to establish a schedule for installation of a treatment system to meet specific effluent guidelines. In 1975, the owner was issued a Notice of Noncompliance and Order to Comply. These indicated violations of all aspects of the 1972 Stipulation.

In 1976, the Stipulation was superseded when the MWRC issued a State permit to discharge, requiring Peerless Plating to meet reduced effluent limitations and to construct appropriate treatment facilities. Peerless Plating violated this permit by failing to meet effluent guidelines, failing to construct appropriate treatment facilities, and failing to maintain a daily sampling and analysis program.

A suit was filed by the Michigan Department of Natural Resources (MDNR) and the MWRC, enjoining Peerless from further discharge and requiring compliance with the MWRC permit.

In 1976, MDNR reported high cyanide concentrations in Little Black Creek sediments adjacent to the seepage lagoons. A Water Quality and Biological Survey of Little Black Creek was conducted in 1977 by the MDNR water quality division. Extremely high concentrations of heavy metals in stream sediments and surface water were attributed to seepage from the waste disposal lagoons on the Peerless property.

In 1978, a hydro geologic study was conducted by MDNR to define the extent of groundwater and surface water contamination. This study resulted in the installation of 7 monitoring wells. Cadmium and cyanide were detected in groundwater samples taken from the wells. In 1980, the seepage lagoon sludges were removed and disposed of and the excavated lagoon area was backfilled.

In 1982, the MDNR Water Quality Division conducted a second study of sediment, surface water, and biota in Little Black Creek in the vicinity of Peerless Plating. The resampling was conducted to determine if the removal of contaminated sediments was necessary. Cadmium concentrations in both water and sediments remained high, although substantial reductions had occurred since 1977. However, cadmium in sediments near the Site was not markedly different from concentrations upstream or downstream. Leaching of plating waste contaminants from the seepage lagoons was concluded to be greatly reduced. Improvement in stream quality was indicated by the increased number of general biota categories. Sediment removal from Little Black Creek was not recommended because upstream sources and urban runoff continued as significant heavy metal contributors, and sediment removal would eliminate most available animal habitat.

In 1983, the MDNR conducted an investigation into the operating practices at the Site and sampled materials in and around the plant. The MDNR found that treatment facilities still had not been upgraded and discharge limitations were still being exceeded for chromium, cyanide, cadmium, and zinc. The MDNR determined that manholes inside the plant did not connect to the sanitary sewer or plant treatment systems, so wastes were discharged directly to the ground under the building.

In 1983, The MDNR and the Michigan Attorney General again filed a suit against Peerless for failure to meet county ordinance discharge limitations.

In June 1983, Peerless Plating closed as a result of regulatory actions, labor problems, and financial difficulties. The owner declared bankruptcy. The plant was abandoned and the plating solutions, raw materials and drummed wastes were left throughout the building.

State Agencies contacted the U.S. EPA Region V Spill Response section requesting that the Site be considered for emergency action under CERCLA. In the fall of 1983, a Site Assessment was conducted and the U.S. EPA determined that the Peerless Plating facility was an immediate threat to human health and the environment.

From September 6 until October 7, 1983, the U.S. EPA carried out an Emergency Response Action at the Site. The objectives of the emergency response action included the removal and disposal of hazardous waste and decontamination of the facility. This action resulted in the removal of 37,000 gallons of hazardous liquids including sulfuric acid, nitric acid, hydrochloric acid, chromic acid, cyanide plating solution, chromium plating solutions and trichloroethylene. Lagoons were drained, soil was removed from the lagoons area, soils and sludges were removed from the building interior vats, lines, tanks, sumps, floorboards and walls were decontaminated. Sewer lines were sealed, virgin and proprietary chemicals were removed and on Site neutralization of cyanides and nitric acid occurred.

In 1984, the U.S. EPA conducted a Preliminary Assessment (PA) and reported that groundwater was contaminated with trichloroethylene (TCE), perchloroethylene (PCE) and Chloroform, and that surface water and sediment in Little Black Creek were contaminated with heavy metals. The building structure was reported to be unsound and Site access restriction was inadequate. Recommendations included performing a Site inspection to confirm whether all on Site liquids and containers had been removed during the 1983 emergency response action and to assess groundwater, soil and surface water contamination.

A Site Inspection was conducted in 1985 to determine the extent of contamination. A hydrogeolgic study was also conducted in 1985 to further delineate the extent of groundwater contamination. Results indicated contamination of groundwater by heavy metals and volatile organics associated with activities at a plating operation.

In June 1990, the Peerless Plating Site was finalized on the National Priority List. From 1990 through 1992, a Remedial Investigation/Feasibility Study (RI/FS) was conducted to determine the nature and extent of contamination at the Site. Based on these findings, a ROD was issued for the Site in September 1992.

Basis for Taking Action

Contaminants

Hazardous substances that have been released at the Site in each media include:

<u>Soil</u> <u>Groundwater</u>

arsenic arsenic cadmium antimony cadmium chromium chromium copper nickel copper lead cyanide nickel acetone cyanide benzene benzene trichloroethane 1,1 dichloroethane vinyl chloride

ethylbenzene perchloroethylene

toluene

vinyl chloride

xylene

Exposure to soil and groundwater are associated with significant human health risks due to exceedances of U.S. EPA's risk management criteria for the reasonable maximum exposure scenarios. The carcinogenic risks were highest for exposure to contaminated soil and groundwater exceeded the acceptable risk range of 1 X10-4 to 1 X 10-6.

IV. Remedial Actions

Remedy Selection

On September 21, 1992, U.S. EPA issued a ROD that called for the following actions:

- Demolition and disposal of the Peerless Plating building in order to facilitate additional soil sampling underneath the building and around the perimeter during the remedial design phase.
- Air stripping and treatment of the volatile organic compounds in the groundwater, followed by precipitation of inorganic compounds. The treated groundwater was discharged into Little Black Creek.
- In-situ Vapor Extraction for the organic compounds and stabilization of inorganic compounds in the soil. The treated soil will be disposed of off Site.

The selected remedy uses a permanent treatment system to eliminate the principal threat
posed to human health and the environment by removing contaminated soils and the
source of further groundwater contamination in the subsurface soil.

The purpose of the response action is to control risks posed by ingestion of and dermal contact with contaminated groundwater and soils and to treat the principal threat (the contaminated soils).

The ROD established groundwater cleanup standards based on Safe Drinking Water Act Maximum Contaminant Levels (MCLs), risk-based levels, and State of Michigan criteria for protection of groundwater quality. Two ESDs were issued following the approval of the ROD that changed the soil cleanup standards at the Site and required the use of institutional controls because some contaminated soils would be left on Site as well as on adjacent property under a building addition.

The first ESD issued in 1997 was based on the collection of Site specific data that had not been collected previously. The cleanup standards in the ROD were based on background concentrations from a single sample collected at another Superfund Site. Also, the State of Michigan promulgated new cleanup standards for land use-based remediation. Using this information, new soil cleanup standards were generated.

A second ESD was issued in 2001. This ESD was issued to allow for contaminated soils to remain on Site above the cleanup levels because the ROD indicated that all contaminated soils would be excavated and stabilized on Site to allow for unrestricted Site use. This ESD also allowed for excavation of contaminated soils within 2 feet of Little Black Creek. This would maintain the integrity of the stream bank and reduce any impact to the Creek. The ESD required that deed restrictions be placed on the property because contaminated soils were being left on Site as well as on adjacent property.

In March 2006, a third ESD was issued for the Peerless Plating Site. The U.S. EPA issued this ESD in order to make a change to reduce some or all of the treatment requirements outlined in the 1992 ROD and also to change the discharge point for the groundwater pump and treat system from Little Black Creek to the Muskegon Waste Water Treatment Plant (POTW). This ESD also allowed for reduction or elimination of pretreatment products. To date, the plant operator has been able to eliminate all pretreatment chemicals needed.

In 2006, a local watershed group raised a concern about cadmium in sediments in Little Black Creek. Because of this concern, in August 2006, MDEQ personnel conducted sediment sampling along a portion of the Little Black Creek to determine if cadmium levels had changed since the sampling conducted as part of the RI/FS for this site. During the RI/FS, seven surface water and sediment samples were collected. The RI/FS samples also showed elevated levels of heavy metals including cadmium. At the time of the ROD, it was determined that there were other contaminant sources upstream from the Site which was contributing to contamination

found in Little Black Creek. At the time of the ROD, it was also determined that any remediation of Little Black Creek would be more detrimental to the ecological habitat than would benefit the stream. MDEQ has submitted the results of the August 2006 sampling event to the U.S. EPA and U.S. EPA is currently reviewing the results. It is important to note that at this time, U.S. EPA has determined that the decision made at the time of the ROD not to address contaminated sediments in Little Black Creek is still protective and other contaminate source along the creek still exist.

Remedy Implementation

All work preformed at this Superfund Site was conducted by U.S. EPA under a Superfund financed cleanup. A ROD was signed for the Site on September 21, 1992. The Remedial Action objectives were developed as a result of the data collected during the RI and post ROD design phase. The purpose of the response action is to control risks posed by ingestion of and dermal contact with contaminated groundwater and soils and to treat the principal threat (the contaminated soils).

Activities at the Site included multiple removal activities to eliminate the source of contamination from the Site and to contain and remediate the contaminated groundwater. These included:

Soil remediation construction activities. There were three phases of soil remediation construction activities. Phase 1 occurred from August 1977 until January 1999 and included SVE treatment; soil excavation, treatment, and disposal; and removal of an underground storage tank (UST) on Site. Phase 2 took place from December 1999 through October 2000 and included additional soil excavation, treatment and disposal off Site and to the east of the Site. Phase 3 lasted from October 2000 to February 2001 and included off-Site soil excavation, treatment and disposal of soils on the Hardware Distributors and Asphalt Paving properties. A total of 16, 404 tons of soil were treated and disposed off-Site during this action.

During soil excavation activities it was determined that soil exceeding the cleanup standards 2 feet below the groundwater table would not be excavated and would be left in place. Phase 1 excavation activities required that some areas on Site be left above cleanup standards. Confirmatory sampling during this phase showed that levels of cadmium and TCE were detected at concentrations greater than their cleanup standards.

All confirmatory samples collected during Phase 2 and Phase 3 were below cleanup standards. However, soils were only removed up to the building on the Hardware Distributor property, and it is assumed that an addition to this building is built over contaminated soils.

Groundwater remediation construction activities. Groundwater remediation construction activities were conducted from November 1999 through April 2002. This involved constructing a groundwater extraction and treatment system and conducting performance testing. A Pre-final inspection was conducted on February 10, 2001, and determined that the contractors did construct the remedy in accordance with the remedial design plans and specifications.

The groundwater pumping (extraction) system includes six extraction wells. These wells are six inches in diameter and have approximately five feet of screen, extending from approximately 55 to 60 feet. Following treatment groundwater was discharged into Little Black Creek.

The Site achieved construction completion status when the Preliminary Closeout Report was signed in April 2001.

U.S. EPA and the State have determined that all RA construction activities were performed according to specifications. It is expected that cleanup levels for the groundwater contaminants will be reached within approximately ten years. After groundwater cleanup levels have been met, U.S. EPA will issue a Final Close Out Report.

Three ESDs were signed on August 7, 1997, April 5, 2001 and March 15, 2006. The 1997 ESD established Site specific cleanup goals for the soil on-Site. The 2001 ESD addressed off Site stabilization of soils instead of on-site stabilization of soils as indicated in the ROD and included the need for the addition of institutional controls (Deed restrictions) because soils and groundwater concentrations remain on site and exceed cleanup criteria. The March 2006 ESD made a change to reduce some or all of the treatment requirements outlined in the 1992 ROD and also changed the discharge point for the groundwater pump and treat system from Little Black Creek to the Muskegon Waste Water Treatment Plant (POTW).

Cleanup goals for the Site are:

TABLE 2

Contaminant of Concern	Groundwater (ug/l)	Soil (mg/kg)	
Arsenic	0.2	10.7	
Cadmium	4.0	210	
Aluminum	50	No criteria	
Antimony	30	150	
Barium	2,000	30,000	
Chromium III	7,000	69,000	
Chromium VI	2.0	180	
Lead	5.0	400	
Mercury	2.0	130	
Nickel	57 960		
Silver	0.1	350	

Contaminant of Concern	Groundwater (ug/l)	Soil (mg/kg)	
Thallium	0.5	28	
Cyanide	4.0	9,300	
Benzene	1.0	78	
1,1 Dichloroethane	700	13,000	
Chloroform	6.0	270	
Trichloroethylene (TCE)	3.0	160	
Vinyl Chloride	0.2	1.2	
1,2 Dichloroethane	0.4	25	
Ethylbenzene	30	6,700	
Toluene	100	11,000	
1,1,1 -Trichloroethane	117	3,100	
Xylenes	59	130,000	

Institutional Controls

Decision Document:

The ROD identified cleanup levels for soil and groundwater at the Site. The assumptions used in selecting the soil cleanup standards in the remedy were for commercial/industrial uses. The remedy assumed also that the groundwater would not be used until cleanup levels were achieved. The 1997 ESD required that Institutional Controls (ICs) in the form of deed restrictions be placed on the property because contaminated soils were being left on Site as well as on adjacent property. Deed restrictions, are a form of proprietary IC that runs with the land. Additionally, based upon best professional judgment, additional ICs may be required in the areas where groundwater contamination has come to be located in order to protect human health and the environment.

ICs are non-engineered instruments, such as administrative and/or legal controls, that help minimize the potential for exposure to contamination and protect the integrity of the remedy. Compliance with ICs is required to assure long-term protectiveness for any areas which do not allow for unlimited use or unrestricted exposure (UU/UE).

The table below summarizes institutional controls for these restricted areas.

Institutional Controls Summary Table

Media, Engineered Controls, & Areas that Do Not Support UU/UE Based on Current Conditions.	IC Objective	Title of Institutional Control Instrument Implemented (note if planned)
Peerless Site Property Soil treated to industrial cleanup standards/ Groundwater exceeds cleanup standards	Prohibit residential use; Prohibit groundwater use until cleanup standards are achieved Prohibit excavation of soils	Deed Restrictions (planned)
Groundwater Treatment System on Peerless Property Site	No interference with Engineered Control	Deed restrictions (planned)
Hardware Distributors Property Soil treated to industrial cleanup standards/ Groundwater exceeds cleanup standards	Prohibit residential use; Prohibit groundwater use until cleanup standards are achieved No interference with Engineered Control Prohibit exaction of soils	Deed Restrictions (planned)
Groundwater areas where groundwater contamination has come to be located	Prohibit residential use; Prohibit groundwater use until cleanup standards are achieved No interference with Engineered Control	Restrictive Covenant or Ordinance (planned)

Maps which depict the current conditions of the site and areas which do not allow for UU/UE will be developed as part of the IC plan.

Based upon the site inspection and interviews, no inconsistent uses have been identified on these above-mentioned properties. However, to assure long-term protectiveness, effective deed restrictions must be implemented and maintained. Therefore, U.S. EPA will develop an IC plan for implementing the restrictions and monitoring plan. This plan will include title work to identify owners and inconsistent encumbrances which might need to be subordinated, developing accurate maps, implementation of deed restrictions. U.S. EPA will negotiate with the MDEQ and the Hardware Distributor property owners to implement all restrictions on their properties. The IC plan will be developed 6 months from the approval of this Five Year Review.

System Operation/Operation and Maintenance

Operation and Maintenance (O&M) activities are being conducted for the groundwater pump and treat system and long-term groundwater monitoring for the Peerless Site. O&M activities began in June 2002 following system acceptance from the construction contractor. The primary activities associated with O&M at the Peerless Plating Site include:

- Operation of the treatment plant 24 hours per day, seven days per week while treating water from all active extraction wells
- · Inspection and maintenance of all groundwater extraction and monitoring wells
- Inspection, maintenance, and operation of the groundwater treatment system
- Monthly monitoring of groundwater treatment system effluent to ensure compliance with the Muskegon County Wastewater Management Industrial User Wastewater Discharge Permit
- Semiannual monitoring of groundwater
- Monthly reporting of treatment system monitoring to the county for review

The groundwater treatment system has been operating since early June 2002. Performance testing of the groundwater treatment system was conducted from June through August 2001. Due to the subcontractor's difficulty in consistently achieving the discharge limit for cadmium, a request was submitted to MDEQ to review and modify the SRD effluent limitations to include the most recent discharge permitting guidelines. In January 2002, MDEQ issued a revised SRD that increased the cadmium discharge limit from a monthly average of 0.72 microgram per liter (ug/L) to 12 ug/L and increased discharge limits for other metals as well. Additional performance testing was conducted to demonstrate the groundwater treatment system's ability to meet the revised cadmium permit limit. Performance testing was completed in March 2002 and the final inspection was conducted in April 2002.

Beginning in October 2006, following the completion of the groundwater treatment discharge to the POTW, the plant operator began to reduce the amount of pretreatment chemicals being used at the treatment plant. The U.S. EPA is currently looking into modification to the plant that will help eliminate all pretreatment of the groundwater prior to discharge and will help reduce overall operations costs.

The estimated annual O&M costs were generated from the operation of the system following the elimination of the pretreatment step in the operation process. This information is provided in Attachment 5.

Once the ICs are implemented, the O&M Plan needs to be updated to assure proper monitoring and reporting are occurring to assure long-term protectiveness.

V. Progress Since the Last Review

The following issues and recommendations were identified in the first Five Year Review:

An erosion problem was detected near the soil removal area at the HD property. This problem was addressed during work to repair one of the pumping wells. This problem no longer exists.

Need for continued operation, maintenance, and optimization of the groundwater pump and treatment system. This is continually being addressed by the contractor operating the treatment system. The most recent improvement to the groundwater treatment plant was the elimination of pretreatment for the groundwater being discharged to the POTW.

Write a letter to the State and Hardware Distributors property owners requesting implementation of IC. This has not been addressed but will be addressed as part of the IC plan being written by U.S. EPA for this Site.

The following are issues to be addressed based on findings in the second 5 Year Review Report:

Evidence of incomplete groundwater capture: Based on a review conducted by the Army Corp of Engineers in the RSE report, it appears that the extent of the full groundwater plume is undefined and the groundwater extraction system is likely not currently containing the plume as defined by the cleanup goals. The plume extent north of PZ19 is the primary uncertainty. Though the system is largely containing the on-site portion of the plume, there is a potential gap in the containment between Extraction Well (EW)-2 and EW-3. There are no users of groundwater in the vicinity of the Site, but groundwater likely discharges to Little Black Creek. To help resolve this issue, EW-3 is being moved and pumping rates will be adjusted once a groundwater modeling exercise is complete. The installation of a new EW-3 and groundwater modeling is expected to be complete by the end of September 2007.

The RSE Executive Summary suggests that the plume boundaries are not well defined and indicates that additional monitoring locations may be necessary in the area of PZ19. They also suggest that additional definition of the plume in the area of EW-6. The RSE report suggested that an upgradient background monitoring point be added to assure no off site sources impact the Site. In 2006, MDEQ installed additional monitoring wells to help address some of theses issues. These wells are just now being included in future groundwater sampling events. Continued monitoring of the area will take place and a review of information will be conducted to determine if full capture is taking place.

<u>Deed Restrictions</u>: Letters will be sent to the MDEQ and Hardware Distributors to implement deed restrictions required by the 2001 ESD for this Site. The Site property is currently owned by the Michigan Land Bank Fast Track Authority (the State of Michigan). The State of Michigan obtained the property through a tax reversion.

<u>Pump and Treat O&M:</u> Over the course of the last five years the groundwater treatment discharge point was changed from the Little Black Creek to the local POTW. As a result of this change U.S. EPA has been able to reduce and/or eliminate the need for pre-treatment of the groundwater prior to discharge to the POTW. U.S. EPA has not realized any cost saving in the operation of the system by switching to the local POTW because the yearly sewer discharge cost is approximately \$288,000 per year. As U.S. EPA completes a reduction in pretreatment additives and determines the need for the operation of a large treatment building and a reduction in operator hours, U.S. EPA should see some cost savings. The implementation of reduction in treatment and reductions in building operation has started and is expected to be completed over the next 12 months.

VI. Five-Year Review Process

Administrative Components

MDEQ was notified of the initiation of the Five Year Review in October 2006. The Five Year Review team was led by Linda Martin of U.S. EPA and included Sunny Krajcovic with MDEQ.

From October 2006 to May 2007, the RPM established the review schedule. Its components included:

- * Community Notification
- * Document Review
- * Data Review
- * Site Inspections
- * Five-Year Review Report Development and Review.

Community Involvement

Activities to involve the community in the Five Year Review were initiated with a meeting in early October 2006 between the RPM and the Community Involvement Coordinator (CIC) for the Peerless Plating Superfund Site. A notice was sent to the Muskegon Chronicle newspaper that a Five-Year Review was to be conducted. The notice was published on February 28, 2007 and invited the public to provide input to U.S. EPA. A copy of this ad can be found in Attachment 6. The results of the review and the report were made available at the Norton Shores Branch Library in the Peerless Plating Superfund Site information repository.

Since the notice and press release were issued, no member of the community voiced any interest or opinion concerning the Five Year Review process.

Document Review

This Five Year Review consisted of a review of relevant documents (See Attachment 2). Applicable soil and groundwater cleanup standards, as listed in the ROD and ESDs were also reviewed (See Table 2).

Data Review

Groundwater extraction and treatment operations at the Peerless Plating Site began in July 2002. The groundwater treatment system has been continually operating for approximately five years. In October 2006, U.S. EPA, MDEQ and the O&M contractor met to discuss revisions to the groundwater sampling plan based on current Site data. The group went over the monitoring wells installed for the Peerless Plating Site and determined that not all of the wells needed to be sampled on a biannual basis. Wells were grouped into Biannual sampling, annual sampling, keep but don't sample and proper abandonment of some wells. The table below summarizes the current agreement:

Monitoring wells	Decision	Comments		
U.S. EPA Wells				
WTO2A	Biannual sampling			
PZ02B		Well will be left in place		
M14013	Annual sampling			
M14014	Annual sampling			
M14015A	Annual sampling			
PZ 18		Properly Abandoned		
PZ 19		Properly Abandoned		
PZ 20		Properly Abandoned		
PZ 11A	Biannual sampling			
PZ 11 B	Biannual sampling			
PZ 11 C	Annual sampling			
PZ 12 A	Biannual sampling *	Over-drill and reinstall		
PZ 12 B	Biannual sampling *	Over-drill and reinstall		
PZ 12 C	Biannual sampling *	Over-drill and reinstall		
PZ 21	Biannual			
PZ 13 A	Biannual			
PZ 13 B	Biannual			
PZ 13 C	Annual			
PZ 05 C		Properly Abandoned		
PZ 06 A	Biannual			
PZ 06 B	Biannual			
PZ 06 C	Biannual			
PZ 14 A	Biannual			
PZ 14 B	Biannual			
PZ 14 C	Biannual			
PZ 15 A		Leave in place		
PZ 15 B		Leave in place		
PZ 15 C		Leave in place		

Monitoring wells	Decision	Comments
PZ 16		Properly Abandon
PZ 17		Properly Abandon
MDEQ wells		
PZ 8	Annual	
PZ 9A	Biannual	
PZ 9B		DEQ will sample, based on
		the results a determination
_		will be made about future
		sampling
PZ 1 A		Water level only
PZ 1 B		Water level only
PZ 2 A	Biannual	
PZ 2 B	Biannual	
PZ 3 A		Water level only
PZ 3 B		Water level only
PZ 3 C		Water level only
PZ 6 A, B, C	Biannual	MDEQ needs to develop the
		well and add a riser
PZ 10 A		U.S. EPA will sample one
		time in the spring 2007
PZ 10 B		U.S. EPA will sample one
		time in the spring 2007
PZ 7		MDEQ needs to develop the
		well. Water level only
PZ 21 B		U.S. EPA will sample in the
		spring of 2007. A sampling
		determination will be made
		after the data is reviewed
PZ 22 C		U.S. EPA will sample in the
		Spring of 2007. A sampling
		determination will be made
		after the data is reviewed.

Attachment 4 includes sampling results comparing groundwater analytical results from November 2002 through September 2006. Attachment 4 also includes a well location map. Based on the comparison of the analytical results, the concentrations of analytes in some of the monitoring wells increased between the sampling events and some decreased. Aluminum arsenic, cadmium, lead and nickel concentrations appear to have decreased in most monitoring wells. No overall trend or pattern can be identified throughout the monitoring rounds.

Based on comparisons of contaminants in the extraction wells, aluminum and trichloroethylene

concentrations have generally decreased in all 6 extraction wells since the system was started up. Cadmium concentrations have decreased in four of the extraction wells but have increased in two of the extraction wells. Cyanide, hexavalent chromium and nickel concentrations have remained approximately the same and zinc concentrations have varied.

Extraction wells appear to be creating a significant groundwater gradient, however and cadmium and hexavalent chromium concentrations detected near EW- 6 suggest that either Little Black Creek may be contributing to detections of these metals or an unidentified source of cadmium or hexavalent chromium exists near well EW-6.

Groundwater monitoring will continue on a semi-annual basis during operation and maintenance of the Site.

Site Inspection

A Site Inspection was conducted at the Site on October 2, 2006. The Site inspection was conducted by Linda Martin of U.S. EPA. Also present were Sunny Krajovic of MDEQ, Lee Christenson, of Tetra Tech Inc., and Blair Selover, Tetra Tech CRI, treatment system operator. At the time of the inspection the treatment system was operational and running. All the monitoring wells were running and pretreatment reduction had started. There were no issues observed during this event.

VII. Technical Assessment

Question A: Is the remedy functioning as intended by the decision documents?

Yes, the remedy is functioning as intended by the decision document. The review of documents, ARARs, risk assumptions and the results of the Site inspection indicates that the remedy is functioning as intended by the ROD, as modified by three ESDs. The remedy is being modified in that the need for pretreatment of the groundwater prior to discharge to the POTW is no longer needed.

There is evidence that there is incomplete capture of the groundwater plume. Modification to the pumping well system as well as additional groundwater modeling to adjust pumping rates is being evaluated and will address this concern.

Question B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives (RAOs) used at the time of remedy selection still valid?

Yes, the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives used at the time of the remedy selection are still valid. There have been no changes in the physical conditions of the Site that would affect the protectiveness of the remedy.

Changes in Standards

As the remedial work has been completed, most ARARs for soil contamination cited in the ROD and/or amended by ESDs have been met. The removal of contaminated soils to the water table has achieved the remedial objective to minimize the contamination to groundwater and prevent direct contact with soil. A list of ARARs is included in Attachment 3.

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

No, there is other information that may call into question the protectiveness of the current remedy.

Technical Assessment Summary

There have been no changes in the physical conditions of the Site that would affect the protectiveness of the remedy. There have been no changes in the toxicity factors for the contaminants of concern that were used in the baseline risk assessment, and there have been no changes to the standardized risk assessment methodology that could affect the protectiveness of the remedy.

VIII. Issues

Table 3: Issues

Issues	Affects Current Protectiveness (Y/N)	Affects Future Protectiveness (Y/N)
Evidence of incomplete groundwater plume capture	N	Υ
Optimization of the groundwater extraction system	N	N
Deed restrictions	N	Υ

IX. Recommendations and Follow-up Actions

Table 4: Recommendations and Follow-up Actions

Issue	Recommendation s and	Party Respo	Oversight	Milestone	Affects Protectiveness (Y/N)	
	Follow-up Actions	nsible	Agency	Date	Current	Future
Evidence of incomplete groundwater plume capture	Move EW-3 and Evaluate capture	U.S. EPA/ State	U.S. EPA/ State	Summer '07	N	Y
Optimization of the groundwater extraction system	Continue to eliminate pre-treatment of the groundwater	U.S. EPA/ State	U.S. EPA/ State	Summer '08	N	N
Institutional controls need to be implemented Effective deed restrictions must be implemented and maintained on Peerless Site property and adjacent properties. Additionally, ICs must be monitored to assure long-term stewardship.	Prepare an IC Plan for title work, mapping of areas subject to restrictions, implementation of deed restrictions, and updating the O&M plan to monitor ICs in the long-term.	U.S. EPA	U.S. EPA/ State	6 months from the approval of this 5 year review	N	Y

X. Protectiveness Statement

The remedy at the Peerless Plating Site currently protects human health and the environment in the short term because there are no current exposure pathways and the remedy appears to be functioning as designed. The removal of onsite contaminated soils has achieved the remedial objective to minimize the migration of contaminants to the groundwater and prevent direct contact with and ingestion of, contaminants in the soil. Long term protectiveness will not fully be achieved until effective institutional controls have been implemented and maintained.

XI. Next Review

The next Five Year Review for the Peerless Plating Site is required by July 2012, five years from the date of this review.

Attachment 1

Peerless Plating Co. Muskegon County, MI

Mi c híng a n Mi c híng a n Chicago State

MID006031348

E Hume Ave

S Journal of the state of the st

Figure 1

Produced by Sarah Backhouse U.S. EPA Region 5 on 5/1/07 Image Date: 2001

Peerless Plating Co. Muskegon County, MI

MID006031348

Elevation Feet 661 - 671 651 - 661 641 - 651 631 - 641 620 - 631 610 - 620 600 - 610 590 - 600

580 - 590

Figure 2

Produced by Sarah Backhouse U.S. EPA Region 5 on 5/1/07

Attachment 2

Documents Reviewed

Peerless Plating Record of Decision - September 21, 1992 Explanation of Significant Difference - August 7, 1997 Explanation of Significant Difference - April 5, 2001 Groundwater Treatment System Performance Test Technical Memorandum -April 2002 Superfund Preliminary Closeout Report for Peerless Plating - April 2001 Baseline Groundwater Monitoring Report Peerless Plating - May 31, 2001 Final Inspection Report Peerless Plating - May 6, 2002 Groundwater Capture Zone Evaluation Technical Memorandum - July 29, 2002 Remedial Action Report Draft Report Peerless Plating - September 2002 Final Remedial Action Investigation Report - September 1991

Explanation of Significant Differences – March 2006

Remediation System Evaluation – July 2006

Long Term Monitoring Report – November 2006

Attachment 3

Comparison of the Comparison o

B) Compliance with ARARs

The selected remedy shall comply with Federal or more stringent State applicable or relevant and appropriate requirements (ARARs) listed below:

1) Chemical-Specific ARARs

Chemical-specific ARARs regulate the release to the environment of specific substances having certain chemical characteristics. Chemical-specific ARARs typically determine the extent of cleanup at a site.

a) Groundwater

Federal ARARs

At the Peerless Plating site, MCLs and MCLGs are not applicable because the site is not a municipal water supply servicing 25 or more people. MCLs are relevant and appropriate since the aquifer in the area of contamination is suitable for use as a source of drinking water in the future. MCLGs are also relevant and appropriate when the standard is set at a level greater than zero (for non-carcinogens). The point of compliance for groundwater cleanup purposes shall be throughout the contaminated groundwater plume.

State ARARs

The U.S. EPA has determined that Rules 705(2) and (3), 707 - 715, 717(2), 719(1), and 723 of the Michigan Environmental Response Regulations are relevant and appropriate to the Peerless Plating site in compliance with Section 121(d)(2) of CERCLA. The cleanup standards presented in Table 7, which shall be attained by the selected remedy, were calculated pursuant to Act 307 Type B criteria.

b) <u>Surface Water</u>

Federal ARARs

Surface water quality standards for the protection of human health and aquatic life were developed under Section 304 of the Clean Water Act (CWA). The Federal Ambient Water Quality Criteria (AWQC) are non-enforceable guidelines that set pollutant concentration limits to protect surface waters.

Pursuant to Section 121 (d) of CERCLA, the Federal AWQC may be relevant and appropriate under the circumstances or a release or threatened release, depending on the designated or potential uses of the surface water, the environmental media affected by the releases or potential releases, and the latest information available. Since the treated groundwater will be discharged to Little Black Creek, designated as a coldwater fishery, the AWQC for protection of freshwater aquatic organisms are relevant and appropriate.

State ARARS

Part 4 of the Water Resources Commission Act (Act 245) establishes rules for water quality standards for surface water in the State of Michigan based on the Federal AWQC. The substantive requirements of Part 4 are applicable to Little Black Creek.

2) Location-Specific ARARs

Location-specific ARARs are those requirements that relate to the geographical position of a site.

Federal ARARS

Executive Order 11988 and 40 CFR Section 264.18, Protection of Flood Plains, are relevant and appropriate for this site. The Order and regulation requires that the groundwater treatment system be located above the 100-year flood plain elevation and be protected from erosional damage. Any portion of the remedy that is constructed in the 100-year flood plain must be adequately protected against a 100-year flood event (e.g., geotextiles should be used to secure topsoil, etc.)

Section 404 of the CWA regulates the discharge of dredged or fill material to waters of the United States. Construction of a surface water discharge point may be regulated under Section 404 of the CWA; therefore, the substantive requirements of Section 404 are applicable to the remedial action at the site.

State ARARs

The Inland Lakes and Streams Act (Act 346) regulates inland lakes and streams in the State. Act 346 would be applicable to any dredging or filling activity on Little Black Creek bottomlands.

The Soil Erosion and Sedimentation Control Act (Act 347) regulates earth changes which involves more than 1 acre or is within 500 feet of a lake or stream. Act 347 would be applicable to the soil excavation activities as the site is within 500 feet of Little Black Creek. Appropriate erosion and sedimentation control measures shall be planned.

3) Action-Specific ARARs

Action-specific ARARs are requirements that define acceptable treatment and disposal procedures for hazardous substances.

Federal ARARs

RCRA Subtitle C requirements regulate the treatment, storage, and disposal of hazardous waste. Because the inorganic contaminants in the soils and sludges are from a listed waste, RCRA Subtitle C requirements are applicable to the treatment, storage, or disposal of these soils and sludges. In addition, the groundwater contains organic contaminants. If, due to the filtering of the organic contaminants in the air stripping and ISVE processes, the spent carbon contains organic contaminants exceeding RCRA toxicity characteristic levels, RCRA Subtitle C requirements are applicable to the treatment or disposal of this material.

RCRA Land Disposal Restrictions (LDRs), 40 CFR Part 268, place restrictions on the land disposal of RCRA hazardous waste. LDRs are applicable to the storage/disposal of stabilized soil, inorganic sludges groundwater precipitation, and possibly the building debris, which are to be disposed at an off-site RCRA Subtitle C facility. The soil, which is contaminated inorganic contaminants from listed (electroplating wastes - F006, F007, F008, and F009), shall comply with LDRs through a treatability variance to the extent that such soils can not be treated to meet the LDR treatment standards. A treatablilty variance is justified because the LDR treatment standards are based on treating less complex matrices of industrial process wastes, as provided for under 40 CFR Section 268.44. The stabilized soil shall be tested to ensure that alternate treatment standards are met prior to disposal at a RCRA subtitle C facility. The inorganic sludges, which are contaminants from listed waste, shall be treated to meet LDR treatment standards prior to disposal at a RCRA Subtitle C facility. The building debris shall be tested to determine if it is contaminated with a listed waste or

is characteristic. If it is determined to be a hazardous waste, it shall be handled as a hazardous waste and shall comply with LDRs through a treatability variance for the debris that can not be treated to meet the LDR treatment standards, as provided for under 40 CFR Section 268.44. The treated debris shall meet alternate treatment standards prior to disposal at a RCRA Subtitle C facility.

RCRA, Guideline for the Land Disposal of Solid Wastes, 40 CFR Part 241 is applicable to the disposal of the building debris, if it is determined not to be a hazardous waste through TCLP tests.

The following RCRA requirements are also ARARs:

- 40 CFR Part 260 <u>Hazardous Waste Management System:</u>
 <u>General</u>;
- 40 CFR Part 261 <u>Identification and Listing of Hazardous</u>
 <u>Waste;</u>
- 40 CFR Part 263 <u>Standards Applicable to Transporters of Hazardous Waste</u>; and,
- 40 CFR Part 264 <u>Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal (TDS) Facilities</u>.

The Clean Water Act Section 402 is applicable to the remedial action at this site. The National Pollution Discharge Elimination System (NPDES) program is the national program for issuing, monitoring, and enforcing permits for direct discharges to surface water bodies. The NPDES program is implemented under 40 CFR Parts 122 - 125. The discharge of treated groundwater to Little Black Creek shall comply with the substantive requirements of the NPDES program.

The Clean Air Act protects and enhances the quality of the nation's air resources by regulating emissions into the air. Pursuant to Section 109 of the Clean Air Act, National Ambient Air Quality Standards have been promulgated in 40 CFR Part 50. These requirements include standards for particulate matter equal or less than 10 microns which is relevant and appropriate to the excavation of the soils at Peerless Plating.

RCRA Subpart AA restablishes air emission standards for process vents in 40 CFR Section 264.1030 - 264.1036. These requirements limit organic emissions and are applicable to the air stripping process.

State ARARS

The State of Michigan administers RCRA within the State. Under the Hazardous Waste Management Act (Act 64), the State regulates the generation, transport, treatment, storage, and disposal of hazardous waste. As with RCRA Subtitle C, above, Act 64 is applicable at the site.

The Michigan Solid Waste Management Act (Act 641) regulates the disposal of non-hazardous solid waste. Act 641 is applicable to the removal and disposal of non-hazardous treatment residue and non-hazardous debris from the site.

Parts 4, 9, and 21 of the Water Resources Commission Act (Act 245) establishes rules for water quality and administers discharge standards as promulgated by the Federal NPDES program. These parts are applicable to discharges of treated groundwater to Little Black Creek. Because the discharge shall occur on-site, a permit is not required, but the discharge must meet the substantive requirements of an NPDES permit.

Michigan's Air Pollution Control Act (Act 348) regulates air quality and is relevant and appropriate at the site.

The Michigan Environmental Response Act (Act provides for the identification, risk assessment, and evaluation of contaminated sites within the State. U.S. EPA has determined that Rules 705(2) and (3), 707 -717(2), 719(1), and 723 are applicable to the Peerless Plating site in compliance with Section 121(d)(2) of CERCLA. The Act 307 rules require that remedial actions shall be protective of human health, safety, the environment, and the natural resources of the To achieve this standard of protectiveness, the Act 307 rules require that a remedial action achieve a degree of cleanup under either Type A (cleanup to background levels), Type B (cleanup to risk-based levels), or Type C (cleanup to risk-based levels under site-specific considerations) criteria. U.S. EPA has determined that the Type B criteria are necessary to be protective and are, therefore, applicable to the Peerless Plating site.

4) To Be Considered

In implementing the selected remedy, U.S. EPA considers the CERCLA Off-Site Policy. This directive, which is not legally binding, establishes CERCLA's policy for off-site legally binding, establishes CERCLA's policy for off-site disposal of CERCLA-related wastes. U.S. EPA will follow the CERCLA Off-Site Policy.

The promulgating notice for process vents (40 CFR Part 264 Subpart AA, 55 FR 25454 - June 20, 1990) states that appropriate controls should be applied to in-situ treatment if necessary. Therefore, the emission standards of RCRA Subpart AA are to be considered for the emissions resulting from the ISVE process.

Attachment 4

TABLE A-1
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR WT02A

Sample Number:	Groundwater	WT02	Δ	WT02	Δ	WT02	Δ	l wro:	ΣΔ	WT02	Δ	WT02	Δ	WT02) A	WT02	Α	l wro	2 A
Sampling Date:	Cleanup Goal	11/20/0		5/28/0		11/17/0		5/18/0		11/30/		6/7/0		9/13/0		3/23/20		9/19/2	
Groundwater Elevation:1	NA NA	596.5	_	596.5		596.7		597.6		596.8		597.2		596.4		598.3		597.	
Well Bottom Elevation:	NA	589.5		589.5		589.5		589.5		589.5	_	589.5		589.5		589.5	_	589.	53
Portion of Glacial Unit:	NA NA	Upper		Uppe	_	Uppe		Uppe		Uppe		Uppe		Uppe		Uppe		Upp	
pH (standard units	NA NA	7.07		6.09		8.34		6.87		7.27		6.59		7.28		6.34		7.2	
Conductivity (mS/cm)	NA	1.27		1.33		1,19		1.34	0	1.91		1.38		1,50)	1.06		1.5	4
Turbidity (NTU)	NA	0		10		10		1.0		0		10		0		1		0	
Inorganic Analytes		ode is	1.00	La Primit				,	Result	(µg/L)	37 a	1.82							
Aluminum	50	47.7		913		29.7	J,L,*	80.0	U,L	255	K,*	100	U	100	Ü	100	U	200	U
Antimony	3	4.0	U	4.0	C	4.0	Ų	4	Ū	4	U	4.0	U	4	Ű	4	Ü	4	Ü
Arsenic	0.2	2.0	U	2.0	Ų	2.0	U	2.0	U	2.0	U	2.0	Ų	2.0	U	2.0	U	0.5	J
Barium	2,000	22.6		36.0		22.4		34.3		49.6		40.9	K	40.4		21.9		32.7	J
Beryllium	NA NA	2.8	U	NA_		0.3	J,K,*	1.0	U	0.3	J,K,*	1.0	U,L	1.0	U	1.00	Ų	5.0	U
Cadmium	4	126		94.7		77.3	L	117		118	Κ,*	127		122		63.2		113	
Calcium	NA NA	64,100		NA		64,400	L	78,300		76,500		67,700		58,300		49,100		68,800	
Chromium	7,000	0.8	J	4.9		3.2	_j,*	6.7	L	3.9_	J,*	4.3	J	4.8	J	2.80	Ĵ	1.9	J,L
Cobalt	NA NA	4.2	U	NA		0.9	J,K	2.0	U,L	2.3	K,*	0.9	J	0.8	J	3.00	U	0.5	J,*
Copper	NA	182		NA		130	K	107	*	154	K,*	142		142		105		134	
Iron	NA NA	19.0	J	NA		30.5		20.3	Ĵ	258	Κ,	8.3	J,K,*	14.2	J	23.8	J	100	U
Lead	5	2.0	U	0.6	J	4.0	Ų	2.0	U	2.0	Ų	2.0	U	2.0	U	3.0	U	2.0	U
Magnesium	NA	11,000		NA		11,100		14,200		14,000		11,800		10,000		9,050		10,800	
Manganese	NA	24.3		NA		12.2		12.9	•	15,7	K,*	18.5	ĸ	14.7		12.0		16.0	
Mercury	2	0.5	U	0.5	U	0.5	ς	0.5	UJ	0.5	C	0.5		0.5	U,L_	0.5	Ū	0.5	Ų
Nickel	57	28.2		19.0		14.9		27.0		22.6	K	30.2	K	18.9		14.2	K	18.5	J
Potassium	NA	5,200	J, K	NA		7,840	_K,* :	3,620	L,*	4,930	Х	7,550	K	3,390		2,670		4,760	
Selenium	NA	1.1	J	NA		8.0	U,L	8	U	4	U	2.0	J	1	J	4.0	U	4	Ų
Silver	0.1	0.5	U	2.0	U	4.0	C	4.0	U	4.0	C	4.0	Ū	4.0	U,	5.00	U	10.0	U
Sodium	NA	194,000	K	NA		886,000		160,000		249,000		180,000		209,000		122,000		186,000	
Thallium	0.5	2.0	U	2.0	Ū	4.0	C	2.0	U	1.0	U	0.6	J	1.0	U	2.0	U	1.0	U
Vanadium	NA NA	4.8	U	NA		18.8	J	10.0	U	20.0	U,L	10.0	U	10.0	U	5.00	U	1.8	J
Zinc	NA NA	905		NA		542		759		679		1,090		826		596		758	
Hexavalent Chromium	2.0	10	U,L	10.0	UJ,L	5.0	J,L	10.0	υ	1.0	U,L	1.0	U,J,L	10.0	U,J,L	1.26	_J,L_	10.0	U,J,L
Cyanide	4	44_	J	202		52		15	J	20		13		37		19		39	
Volatile Organic Compounds	4	1 . (St. 1997)	. 4°			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	i ii			(µg/L)						- <u> </u>			
1,1,1-Trichloroethane	117	1.0	U	1.0	U	1.0	U	1.0	_U,J	1.0	Ų	1.0	U	1.0	U	1.0	<u> </u>	1.0	U
1,1-Dichloroethane	700	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloroethane	0.4	1.0	U	1.0	٥	1.0	C	1.0	U	1.0	Ų	1.0	U	1.0	U	1.0	U	1.0	U
Benzene	1	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	<u> </u>
Chloroform	6	1.0	U	1.0	U	1.0	C	1.1		1.0		1.0	U	1.0	U	1.0	Ų	1.0	U
Ethylbenzene	30	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ü	1.0	C	1.0	Ü
m- and p-Xylenes	59	2.0	U	2.0	Ü	2.0	C	2.0	<u>U</u>	2.0	Ü	2.0	υ	2.0	U	2.0	υ	2.0	U
o-Xylene	59	2.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	С	1.0	Ü
Toluene	100	1.0	U	1.0	Ū	1.0	С	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ū
Trichloroethene	3	1.0	U	1.0	Ü	1.5		1.5	Ĵ	1.0	U	0.6	J	1.0	c	1.7		0.45	J
Vinyl Chloride	0.2	1.0	υ	1.0	UJ	1.0	Ü	1.0	U,J	1.0	U	1.0	Ú	1.0	U	1.0	J	1.0	υ

TABLE A-2 GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ02B

Sample Number:	Groundwater	PZ02B	PZ02B-D	PZ02B	PZ02B	PZ02B-D	PZ02B	PZ02B-D	PZ02B	PZ02B	PZ02B	PZ02B	P2'02B
Sampling Date:	Cleanup Goal	11/20/02	11/20/02	05/28/03	11/17/03	11/17/03	05/18/04	05/18/04	11/30/04	06/09/05	09/13/05	03/21/06	09/19/06
Groundwater Elevation:	NA	596.26	596.26	597.20	598.00	598.00	597.27	597.27	596.54	596.92	596.07	597.96	596.97
Well Bottom Elevation:	NA NA	549.75	549.75	549.75	549.75	549.75	549.75	549.75	549.75	549.75	549.75	549.75	549.75
Portion of Glacial Unit:	NA NA	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower
pH (standard units)	NA NA	8.13	8.13	7.56	8.81	8.81	7.04	7.04	8.01	7 07	7.73	7 94	7 95
Conductivity (mS/cm)	NA NA	0.757	0 757	0 826	0.759	0.759	0.635	0.635	0.705	-	0 636	0.507	0.340
Turbidity (NTU)	NA	0	0	10	10	10	2.0	20 .	0		7.73	11.0	(+.0
Inorganic Analytis	Jan Series Contra			277)2			Result (ug/L)	Say James	5,4 -	<u> </u>			
Aluminum	50	56.6	46.6	24.3 U		40.0 U.L	31.4 J.L	41.7 J.L	31.6 J.*	100 U	100 U	100 U	200 U
Antimony	3	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4 U	4 U	4 U	4.0 U	4 U	4.0 U	4 U
Arsenic	C.2	20 U	2.0 U	2.0 U		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	20 U	2.0 U
Barium	2,000	81.5	81.7	82.9	86 1	81.2	77.9	84.8	80.9	99 K	80.7	78.6	86.2 J
Beryllium	NA NA	2.8 U	2.8 U	ÑĀ	0.5 U	0.5 U	1.0 U	1.0 U	0.5 U.	1.0 U.L	10U	1.00 U	5.0 U
Cadmium	4	1.0 U	1.0 U	1.3 U	0.9 K,J			1.0 U	1.3 U.*	20 U	2.0 U	0.846 J	5.0 U
Calcium	NA NA	60.900	60,700	NA	64,800 K	61,600 K	56,600	56,000	57,800	65,100 K	58.200	54,700	59,000
Chromium	7 000	09 U	0.9 U	1.3 U.L		2.0 U	4.8 L	4.8 L	2.0 U.	4.0 J.K	4.8 J	5.0 U	10.0 U,L
Cobalt	NA	4.2 U	4.2 U	NA .	2.0 U	2.0 U	2.0 U	2.0 U	0.8 J,K,*	0.3 J	1.0 U	3.00 U	50.0 U.*
Copper	NA ·	4.4 U	4.4 U	NA	3.0 U	30 U	6U,*	2.8 J,K,		6.0 U	6.0 U	1.78 J	25.0 U
Iron	NA NA	42 U	42.0 U	NA	30.0 U	30.0 U	42.4	37 0	75.5 K,*	49.4 K,*	6.2 J	23 1 J	-00 U
Lead	5	2.0 U	2.0 U	2.0 U	4.0U	2.0 U	2.0 U	1.0 J	2.0 U	2.0 _U	20 U	30 U	2.0 U
Magnesium	NA.	17,600	17,400	NA	19,300	18,000	16,600	17,800	16,900	17,600	17,700	16,900	17,600
Manganese	NA NA	86 U.*	8.6 U,*	NA	1.0 U	1.0 U	1.3 K,*	1.1 K,*	1.0 K,*	0.3 J,K	1.0 J	1.0 U	15.0 U
Mercury	2	0.5 U	0.5 U	0.5 U	0.5 U	05 U	0.5 UJ	0.5 UJ	0.5 U	05 J	0.5 U,L	05 U	0.5 U
Nickel	57	12 J	10 J	2.3 U	10.0 U	10.0 U	1.4 J	_ 10 J	10.0 U	4.6 K	1.2 J	3.00 U	().9 J
Potassium	NA	1,620 J, K	1,610 J_K	NA .	7,610 K,*	4,850 K,	757 J,L,*	1,100 J.L.	1,480 K	6,180 K	1,390 J	1,300 J	1,490 J
Selenium	NA	4.0 U	4.0 U	NA	12.0 U,L	8.0 U.L	4U	4 U	4 U	4.0 U	4)	4.0 U	4 U
Silver	0.1	1.7 U	1.7 U	2.0 U		4.0 U	4.0 U	40 U	4.0 U	4.0 U	4 0 J	5.00 U	10.0 U
Sodium	NA	40,200 K	40,600 K	NA.	1,030,000	234,000	36,600	36,800	39,200	41,200	36,800	35,100	35,500
Thallium	0.5	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 Ú	2.0 U	1.0 U
Vanadium	ΝA	17.0 U	170 U	NA	19.8 J	13.9 J	10.0 U	10 0 U	20.0 U,L	10.0 U	10 0 IJ	5.00 U	0.4 J
Zinc	NA NA	11.5 J	36.0 U	NA_	10 9 J	9.1 J	30.0 U	30.0 U	7.2 J	30 0 U	30.0	8.77 J	25.7 J
Hexavalent Chrcm um	2.0	10 U	10 U	10.0 UJ,L	10.0 U.	10.0 U,J,L		10.0 UJ.L		1.0 U,J,L	10.0 U,JL	10.0 U.J.L	
Cyanide	4	8 U	8 U	8 U	8 U	B U	B UJ	B ÚJ	5 U	2.0 U.J	5 U	10 U	3 J.K
Volatile Organic Compounds	7월1 : '박기학 (This	1	J#6 - 14.5		1		Result (µg/L)					·	
1,1,1-Trichloroethane	117	1.0 UJ	10 UJ	1.0 U		1.0 UJ	1.0 U,J	10 U,J	10 U	1.0 U	10 U	10 U	1.0 U
1,1-Dichloroethane	700	1.0 U	10 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 ()	1.0 U	1.0 U
1,2-Dichloroethane	0.4	1.0 U	10 U	1.0U		10 U	1.0 U	1.0 U	10 U	1.0 U	10 U	1.0 U	1.0 U
Benzene		1.0 UJ	1.0 UJ	10 U		1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	10 U	10 U	1.0 U
Chloroform	ĵ	10 UJ	1.0 UJ	1.0 U		1.0 UJ	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	30	1.0 U	1.0 U	1.0 U		1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U
m- and p-Xylenes	59	2.0 U	2.0 U	2.0 U		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	20 U
o-Xylene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 L/	1.0 U	1.0 U
Trichloroethene	3	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U.J	1.0 U,J	0.6 J	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl Chloride	0.2	1.0 U	1.0 U	10UJ	1.0 U,J	10 U	1.0 U,J	1.0 U,J	10 U	1.0 U	10 U	10 Ú	1.0 U

TABLE A-3
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR M14013

						~				ببسيب											
Sample Number:	Groundwater	M1401		M140		M1401		M140		M140		M140		M140		M140		M140		M1401	
Sampling Date:	Cleanup Goal	11/21/0		05/28		11/17/0		05/18/		11/30/		06/07/		09/13/		03/21/		09/20/		09/20/	
Groundwater Elevation:	NA	594.8		594.		594.58		595.8		595.2		595.4		594.6		596.5		595.6		595,6	
Well Bottom Elevation:	NA NA	581.89)	581.8		581.89		581.8		581.8	39	581.8	9	581.8	39	581.8	19	581.8	9	581.8	
Portion of Glacial Unit:	NA	Upper		Uppe	er	Upper		Uppe	er	Uppe		Uppe	≥r	Uppe	er	Uppe	er	Uppe	r	Uppe	ar
pH (standard units)	NA	7.52		7.5	5	7.96		7.10)	7.5	5	7.06	<u> </u>	8.56	3	7.18		7.13		7 13	3
Conductivity (mS/cm)	NA	0.962		0.92	0	0.461		0.41	8	0.76	2	0.71	8	0.83	6	0.50	3	0.57)	0.57	0
Turbidity (NTU)	NA	12		10		-10		0.0		11		60		0		9.0		0.0		0.0	,]
Inorganic Analytes	Sanda Hilli	1. 184 18 18	९५ के इस्ते १६ विकास	ORIO SERVICIONE LICENSE SECURIO DE	∗હ્,હેર ∷	ing in the		ann jarra jarr	ર્પ્ડે	Result (µ	(۱/و	, and an				411					
Aluminum	50	87.8		3,490		45.2	L	80.0	Ū	28.1	J,*	100	$\overline{\upsilon}$	100	Ü	112		96.4	j	200	υ
Antimony	3	2.1	J.	1.2	J	4	U	4	U	1	J	4.0	V	3	J	4.0	U	1	J	1	J
Arsenic	0.2	2	U	0.8	<u>j</u>	2	Ū	2.0	Ü	2.0	U	2.0	U	0.5	J,K	2.0	- U	2.0	U	2.0	C
Barium	2,000	24.5		37.4		11.5		19.0		13.1		24.3	K	21.0		11.3		13.9	J	13.2	J
Beryllium	NA	2.8	Ü	NA		0.5	Ū	1.0	U	0.5	U,*	1.0	L,U	1.0	Ü	1.00	ī	5.0	U	5.0	U
Cadmium	4	1,440		3,830		1,120		1,340		1,640		2,220		2,210		1,650		1,880		1,810	
Calcium	NA	92,000		NA		58,500	ĸ	44,100		77,300		90,500		80,400		49,600		60,700		60.20C	
Chromium	7,000	5.3		592		10.1		5.0	L	7.8	K.*	8.9		10.2		26.2		24.7	L	10.5	-L
Cobalt	NA	2.4	J	NA		5.4		3.5	L	5.0	K.	4.3		3.1		2.68		3.3	J.*	2.8	-J1
Copper	NA	4.4	Ū	NA		2.6		1.9	J.K.*	3.0	Ū.	6.0	U	2.0	J	5.31		2.4	J	2.1	
Iron	NA	34.7	J	NA		37.2		11.0	J	34.0	K.*	34.9	K.*	12.6		136		80.5	J	100	U
Lead	5	2	Ū	23.5		2	U	2.0	Ü	2.0	Ü	2.0	Ü	2.0	Ū	3.0	U	2.0	Ū	12	J.K
Magnesium	NA.	15.800		NA		7,770		7,040		13.500		14,000		15,300		8.690		10,500		10,500	
Manganese	NA	251	*	NA		155		110	+	181		249	К	417		97.0		203		164	
Mercury	2	0.5	U	0.5	U.L	0.1	J	0.5	UJ	0.5	U	0.5	U	0.5	Ú.L	0.5	U	0.5	Ū	0.5	-U
Nickel	57	80.1		138		60.5		73.0		90.8	K	124		102		85.8		100		95.2	
Potassium	NA	11,100	J. K	NA		12,800	ĸ.	15,800	L.	7,850	K	14.800	K	6,330		9,520		9.690		9,590	
Selenium	NA NA	4	U	NA		12	U.L	4	Ü	4	Ü	4.0	Ü	4	Ū	4.0	υ	4	υ	4	U
Silver	0.1	1.7	Ü	2	U	4	Ü	4.0	U	1.0	J,K	4.0	U	4.0	Ū	5.00	U	10.0	U	10.0	U
Sodium	NA NA	37,600	K	NA		905,000		16,700		38,700		43,600		56.800		51,600		37,700		38,200	
Thallium	0.5	2	U	2	U	4	U	2.0	Ū	1.0	U	1.0	Ū	1.0	U	2.0	Ū	1.0	Ü	1.0	U
Vanadium	NA NA	17	Ū	NA		19.7	J	10.0	U	20.0	U	10.0	U	10.0	Ü	5.00	Ū	0.6	J	0.6	7
Zinc	NA	651		NA		538		671		770		1,220		970		907		956		904	
Hexavalent Chromium	2.0	10	U	10	UJ.L	3.3	J.*	10.0	- U	10.9	L	18.2	J,L	10.0	U,J,L	3.77	J,L	4.1	J,L	4.3	J,L
Cvanide	4	6	J	1.090		27		12	J	3	J	6.0		7		52		17	ĸ	9	ĸ
Volatile Organic Compounds			0000	1 10 10 10 10 10 10 10 10 10 10 10 10 10	1 300 ptg	500 SAVE SAVE	, ,	**!* . **.#		Result (µ	a/L)	<u> </u>	18 m	<u> </u>			A. A	7 (1 1 m)	7		
1.1.1-Trichloroethane	117	1	UJ	1	Ü	1	Ü	1.0	U.J	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ū
1,1-Dichloroethane	700	1	υJ		υ	1	ΰ	1.0	Ü	1.0	υ	1.0	- -	1.0	- Ū-	1.0	- 	1.0	Ū	1.0	- 0
1.2-Dichloroethane	0.4		Ü		Ť	1	Ŭ	1.0	Ŭ	1.0	- Ū	1.0	Ū	1.0	Ū	1.0	- Ŭ	1.0	Ü	1.0	
Benzene	1	1	UJ		-ŭ	1	Ü	1.0	Ü	1.0	- -	1.0	- Ū	1.0	- - -	1.0	Ť	1.0	Ü	1.0	U
Chloroform	6	1	UJ	1			- U	1.0	- 5	1.0	U	1.0	_ U _	1.0	U	1.0	- U	1.0	Ū	1.0	- ŭ 1
Ethylbenzene	30		UJ	- i	Ü	1	Ü	1.0	Ü	1.0	- ŭ	1.0	Ü	1.0	- Ū	1.0	- Ŭ -	1.0	- U -	1.0	
m- and p-Xylenes	59	2	UJ	2	- 	2	-	2.0	Ü	2.0	- ŭ -	2.0	- U	2.0	- U	2.0	- 	2.0	Ü	2.0	- ŭ 1
o-Xylene	59	1	땡	1	- ;	1	Ü	1.0		1.0	- 0	1.0	-	1.0	- Ü -	1.0	- u -	1.0	Ü	1.0	
Toluene	100		-63		- 🖁		U	1.0	- 5	1.0	-1	1.0	 -	1.0	- U	0.3	~წ	1.0	Ü	1.0	
Trichloroethene	3	26	J		- ;	22	<u>~</u>	4.2	-5-	53		38.0	- j -	370		7		20		21	-∸∤
			ارن		- 63	1	U	1.0	<u> </u>	1.5			Ü	1.0		1.0	U.J	1.0	U	1.0	-∵
Vinyl Chloride	0.2	1	UJ	١	UJ.	1	U	1.0	U,J	1.5		1.0	Ų	1.0	U	1.0	0,3	1.0	U	1.0	

TABLE A-4
GROUNDWATER ANALYTICAL RESULTS FROM JUNE 2005 TO SEPTEMBER 2006 SAMPLING EVENTS FOR M14014

Sample Number:	Groundwater Cleanup	M1401	14	M140	4	M1401	4	M140)14
Sampling Date:	Goal (μg/L)	06/07/	05	09/13/	05	03/21/0	06	09/20	/06
Groundwater Elevation:	NA	595.0	1	594.1	5	596.0	6	595.	24
Well Bottom Elevation:1	NA	582.3	6	582.3	6	582.3	6	582.	36
Portion of Glacial Unit:	NA NA	Uppe	r	Uppe	r	Uppe	r	Upp	er
pH (standard units)	NA	6.86		7.94		7.21		7.4	
Conductivity (mS/cm)	NA NA	0.616		0.674		0.856		0.48	
Turbidity (NTU)	NA	10		0		159		0	
Inorganic Analytes			Res	ult (ug/L)	1 1 1 1 1	1.36	177		
Aluminum	50	100.0	U	100	U	100	U	200	U
Antimony	3	4.0	υ	4	U	4.0	Ü	4	U
Arsenic	0.2	2.0	U	2.0	U	2.0	U	2.0	U
Barium	2,000	27.6	K	20.9		34.0		19.2	J
Beryllium	NA	1.0	U,L	1.0	U	1.00	U	5.0	U
Cadmium	4	2,180.0		1,440		3,740		1,280	
Calcium	NA	54,500.0		39,400		66,400		44,800	
Chromium	7,000	6.6		6.0	J	3.69	J	3.6	J,L
Cobalt	NA	2.0		1.6		1.92	J	1.70	J,*
Copper	NA	2.2	J	2.2	J	3.66	J	2.7	J
Iron	NA	46.8	K,*	7.8	J	32.4	J	61.3	J
Lead	5	2.0	U	2.0	U	3.0	Ü	2.0	Ü
Magnesium	NA	13,100.0		8,440		20,800		10,700	
Manganese	NA	249.0	K	166		123		234	
Mercury	2	0.5	υ	0.5	U,L	0.5	U	0.5	U
Nickel	57	125.0		80.1		136		67.1	
Potassium	NA	9,450.0	K	6,050		6,170		4,740	J
Selenium	NA	4.0	С	4	Ų	4.0	U	4	Ų
Silver	0.1	4.0	Ü	4.0	Ų	5.00	U	10.0	Ū
Sodium	NA	67,200.0		76,300		88,000		33,400	
Thallium	0.5	1.0	C	1.0	U	2.0	Ü	1.0	U
Vanadium	NA	10.0	C	10.0	U	5.00	Ū	0.9	J
Zinc	NA NA	1,220.0		672		1,340		623	
Hexavalent Chromium	2.0	1.0	U,J,L	10.0	U	0.858	J.L	10.0	U,J,L
Cyanide	4	12.0		11		19		20	J,K
Volatile Organic Compounds	(1)	1	Res	ult (ug/L)					
1,1,1-Trichloroethane	117	1.0	C	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	700	1.0	C	1.0	U	1.0	U	1.0	Ų
1,2-Dichloroethane	0.4	1.0	U	1.0	U	1.0	U	1.0	U_
Benzene	1	1.0	U	1.0	U	1.0	Ü	1.0	Ų
Chloroform	6	1.0	C	1.0	U	1.0	Ü	· 1.0	U
Ethylbenzene	30	1.0	U	1.0	U	1.0	Ú	1.0	U
m- and p-Xylenes	59	2.0	U	2.0	U	2.0	Ü	2.0	U
o-Xylene	59	1.0	U	1.0	U	1.0	Ú	1.0	U
Toluene	100	1.0	U	1.0	U	1.0	Ū	1.0	U
Trichloroethene	3	1.0	U	1.0	U	1.0	Ü	1.0	U
Vinyl Chloride	0.2	1.0	U	1.0	Ú	1.0	U.J	1.0	Ü

TABLE A-5
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR M14015A

Sample Number:	Groundwater	M14015	Δ	M1401	5Δ	M14015	A-D	M1401	5Δ	M1401	15Δ	M140	15Δ	M1401	Ι5Δ	M1401	5Δ	M1401	5Δ	M140	115A
Sampling Date:	Cleanup Goal	11/21/0		05/28/		05/28/0		11/18/0	_	05/18/		11/30		06/07/		09/13/		03/21/		09/20	
Groundwater Elevation:	NA NA	595.0	_		-	-		594.6		595.		594.		594.8		594.0		595.8		595	
Well Bottom Elevation:	NA NA	569.0		569.0)5	569.0	5	569.0		569.0		569.		569.0		569.0		569.0		569	
Portion of Glacial Unit:	NA NA	Middle		Midd		Middle		Middle		Midd		Mide		Midd		Midd		Midd		Mide	
pH (standard units)	NA NA	7.45						7.74	_	6.86		7.7		7.36		7.35		7.33		7.2	
Conductivity (mS/cm)	NA NA	1.08						0.93		0.87		0.94		0.69		0.91		0.95		0.8	
Turbidity (NTU)	NA NA	218						10		120.		12		102		0		159		29	
Inorganic Analytes			, 1 T.,		. 88.	12.1.		 		Result		1 2 9 9 1				·		1			<u></u>
Aluminum	50	735		3,040		3,770		5,820		3,820	U-4:-:	2,680	*	28.6	J.L	54.9	j	1,000		423	
Antimony	3	4.0	U	4.0	U	4.0	U	4.0	U	4	Ū	4	U	4.0	Ū	4	Ū	4.0	U	4	- U
Arsenic	0.2	2.0	U	0.6	J	1.0	J	1.5	J	1,1	J	0.6	J	2.0	U	2.0	U	0.8	J	2.0	Ū
Barium	2,000	29.2		47.6		54.3		69.6		55.9		47.4		33.8	К	37.6		48.0		32.9	
Beryllium	NA	2.8	U	NA		NA		0.2	J,K	1.0	Ū	0.5	U,*	1.0	U,L	1.0	U	1.00	U	5.0	
Cadmium	4	490		609		738		891	·	683		488		175		231		335		209	
Calcium	NA	79,900		NA		NA		90,300		75,900		75,100		69,000	-	72,900		85,100		66,100	
Chromium	7,000	34.8		130		157		227	-	143		99.4		27.7		18.7		62.5		39.1	
Cobalt	NA	2.0	J	NA		NA		4.6	К	4.5	L	5.6	K,*	3.7		5.7		2.04	J	2.5	
Copper	NA	4.2	J	NA		NA		20.9	К	12.2	K,*	3.0	U,L,*	6.0	U	2.5	J	9.18		3.3	
Iron	NA NA	2,270		NA		NA		11,400		5,140		3,580	K,*	2,470	K,*	1,270		3,340		1,110	
Lead	5	0.6	J	1.9	J	2.5		6.3		3.8		1.4	J	2.0	U	2.0	U	3.0	Ü	2.0	
Magnesium	NA	13,700		NA		NA		17,100		15,000		13,900		12,300		13,400		18,000		13,400	
Manganese	NA	1,920	*	NA		NA		1,150		1,860	*	1,660		1,330	K	2,210		814		1,020	
Mercury	2	0.5	C	0.5	U,L	0.5	C	0.5	C	0.5	UJ	0.5	U	0.5	U	0.5	U,L	0.5	U	0.5	U
Nickel	57	27.6		38.2		45.9		61.0		47.1		37.6	K	14	K	15.9		25.0	К	16.0	Į.
Potassium	NA	4,090	J, K	NA		NA		7,430	K,*	4,910	L,*	4,950	К .	8,200	K	5,050		5,420		5,620	
Selenium	NA	4.0	c	NA		NA		4.0	Ç	4	U	4	Ū	1.0	Ĵ	4	J	1.1	J	4	Ú
Silver	0.1	1.7	c	2.0	Ū	2.0	Ω	1.2	_	4.0	Ü	4.0	Ü	1.2	J	4.0	Ų	5.00	U	10.0	U
Sodium	NA	131,000	K	NA		NA		81,700	٦	75,500		79,900		78,300		76,100		108,000		79,100	
Thallium	0.5	2.0	U	2.0	U	2.0	Ü	2.0	c	2.0	U	2.0	U	2.0	U	1.0	Ü	0.5	J	1.0	U
Vanadium	NA NA	17.0	U	NA		NA		15.4	J	5.8	J	20.0	U,L	10.0	U	10.0	U	2.78	J	1.1	J
Zinc	NA	229		NA		NA		398		331		240		115		124		199		127	
Hexavalent Chromium	2.0	10	U	10.0	UJ,L	10.0	UJ,L			12.6		15.1	L	9.8	J,L	7.4	J_	21.3	J,L	15.1	J,L
Cyanide	4	54	J	155		143		195	J	209	J	140		82		61		91		102	J
Volatile Organic Compounds				and the second				gapine is a single		Result											<u>. 2 * </u>
1,1,1-Trichloroethane	117	1.0	Ü	1.0	U	1.0	C	1.0	C	1.0	U,J	1.0	U_	1.0	U	1.0	U	1.0	Ű	1.0	U_
1,1-Dichloroethane	700	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ú
1,2-Dichloroethane	0.4	1.0	U	1.0	U	1.0	U	1.0	J	1.0	Ū	1.0	Ü	1.0	U	1.0	U	1.0	Ü	1.0	Ú
Benzene	1	1.0	C	1.0	U	1.0	C	1.0	Ų	1.0	U	1.0	U	1.0	υ	1.0	U	1.0	U	1.0	Ü
Chloroform	6	1.0	U	0.85	J	0.89	J	1.0	U,J	1.2		0.9	J	2.1		1.0	U	0.6	J	0.69	<u>. J</u>
Ethylbenzene	30	1.0	C	1.0	U	1.0	Ü	1.0	<u> </u>	1.0	U	1.0	U	1.0	U	1.0	U	1.0	υ	1.0	U
m- and p-Xylenes	59	2.0	Ų	2.0	U	2.0	Ü	2.0	Ω	2.0	U	2.0	U	2.0	U	2.0	υ	2.0	U	2.0	Ū.
o-Xylene	59	1.0	ÜĴ	1.0	Ų	1.0	C	1.0	U	1.0	Ų	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Toluene	100	1.0	c	1.0	C	1.0	Ξ	1.0	c	1.0	U	1.0	U	1.0	_ U_	1.0	U	1.0	U	1.0	U
Trichloroethene	3	1.0	C	1.0	U	1.0	U	1.0	U	1.0	U,J	1.0	U	1.0	U	1.0	U	1.0	ΰ	1.0	U
Vinyl Chloride	0.2	1.0	Ü	1.0	IJ	1.0	IJ	1.0	υJ	1.0	U,J	1.0	Ū	1.0	U	1.0	U	1.0	U.J	1.0	u

TABLE A-6
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ11A

Sample Number:	Groundwater	PZ11A		PZ11	<u> </u>	PZ11/		PZ11	<u> </u>	PZ11.		PZ11	^	PZ11		PZ1	14	PZ1	<u></u>
Sampling Date:	Cleanup Goal	11/21/0	_	05/28/		11/17/0		05/19/		11/30/		06/07/		09/13/		03/22		09/2	
			_									 		 		594.4		594	
Groundwater Elevation:	NA NA	592.93		593.1		592.9		593.6		593.6		593.5		592.9					
Well Bottom Elevation:	NA NA	588.55		588.5		588.5		588.5		588.5		588.5		588.5		588.		588	
Portion of Glacial Unit:	NA NA	Upper		Uppe		Uppe		Uppe		Uppe		Uppe		Uppe	<u>"</u>	Upp		Up	
pH (standard units)	NA	7.12		6.89		7.5		7,43		7.16		8.30		6.71		6.5		7.2	
Conductivity (mS/cm)	NA NA	0.991		0.849	_	0.865		0.62		0.607		0.566	<u> </u>	0.622	<u></u>	0.49	10	0.4	
Turbidity (NTU)	NA	10	لبب	10		-10		1.0		>999	32-	<u> </u>		0		0)	
inorganic Analytes		and the first of the	 '		1 1 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5	· à			t (µg/L)				1 - 1 - 2				000	
Aluminum	50	36,400		49.0		184	_ <u>L</u>	80.0	<u>u</u>	80,000	*	255	<u> </u>	100	U	100	U	200	<u>U</u>
Antimony	3	4.0	U	4.0	U	4.0	U	4	U	4	U	4.0	U	4	<u>u</u>	4.0	U	4	Ü
Arsenic	0.2	17.5		2.0	U	2.0	U	2.0	<u> </u>	22,1		2.0	U	2.0	U	2.0	<u> </u>	2.0	<u> </u>
Barium	2,000	775		62.1		65.1	لبب	39.0		1,260		52.0	K	40.0		39.9		40.0	
Beryllium	NA NA	3.2		NA.		0.5	U	1.0	U	5.4	<u> </u>	1.0	U,L	1.0	υ	1.00	U	5.0	<u> </u>
Cadmium	4	3,180		603		713		478		11,500		679		515		815		685	
Calcium	NA	213,000		NA		96,600	K_	65,600		328,000		68,500		47,100		68.4		59,500	
Chromium	7,000	233		20.6		21.4		28.9		480		27.9		28.5		19.3		60.1	
Cobalt	NA NA	25.6		NA		0.5	J	2.0	U,L	66.5	_K,*	0.4	J	0.7	<u> </u>	3.00	<u> </u>	0.9	J,*
Copper	NA	111		NA		9.8		10.4	_K,*	285	<u>K</u> ,*	6.0		4.7		10.6		6.0	J,L
Iron	NA	55,400		NA		189		54.9		117,000		274	K,*	19.4	<u> </u>	116		31.0	
Lead	5	69.2		2.0	U	2.0	_U	2.0	U	125		2.0	U	0.9	J	3.0	<u> </u>	2.0	<u> </u>
Magnesium	NA	79,100		NA		35,500		30,000		164,000		27,200		14,600		40,900		18,200	
Manganese	NA	8,380	•	NA		26.9		1.0	K,*	26,500		97.3	K	48.6		7.49	<u></u> _	4.4	J
Mercury	2	0.2		0.5	Ü	0.1	J	0.5	IJ	0.3		0.5	Ū	0.5	U,L	0.5	U	0.5	U
Nickel	57	97.6		3.4		5.8		6.3	J	228	_K	7.5	K	4.2		5.03	K	5.60	J,K
Potassium	NA	14,800	J, K	NA_		10,100	Κ,*	3,620	L,*	17,700	K	8,820	K	5,210		4,290		4,820	J
Selenium	NA NA	4.0	U	NA		20.0	U.L	4	U	12	<u> </u>	4.0	U	4	U	4.0	Ü	4	U
Silver	0.1	1.7	U	2.0	ς	4.0	U	4.0	U	2.0	J,K	4.0	U	4.0	U	5.00	U	10.0	U
Sodium	NA	55,700	K	NA		861,000		11,100		22,000		21,000		37,100		8,960		8,700	
Thallium	0.5	2.0	U	2.0	U	6.0	_U	2.0	U	2.1	J	1.0	U	1.0	<u>u</u>	2.0	<u>U</u>	1.0	U
Vanadium	NA	55.5	ᅶᆛ	NA		20.1		10.0	U	143	K	10.0	Ū	10.0	U	5.00	U	0.7	J,L_
Zinc	NA	304		NA		28.3		30.0	U	602		12,4	<u> </u>	30.0	U	6.70	<u>J</u>	29.9	J
Hexavalent Chromium	2.0	30		14.6		18.2		17.6		13.0		16,0	J,L	14.0	J,L	18.1	<u>J,Ł</u>	56.6	J,*
Cyanide	4	76	ا ز	115		118		131	J	68		61		31		322		81	
Velatile Organic Compounds										(μg/L)						~			
1,1,1-Trichloroethane	117	1.0	U	1.0	U	1.0	U	1.0	U,J	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	700	1.0	U	1.0	υ	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ū	1.0	U	1.0	<u> </u>
1,2-Dichloroethane	0.4	1.0	U	1.0	U	1.0	Ü	1.0	C	1.0	U	1.0	U	1.0	<u> </u>	1.0	U	1.0	U
Benzene	1 1	1.0	<u>U</u>	1.0	U	1.0	U_	1.0	Ų	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroform	6	1.0	U	1.0	Ŋ	1.0	U	0.78		1.0	U	1.0	U	1.0	U	1.0	Ų	1.0	U
Ethylbenzerie	30	1.0	U	1.0	U	1.0	<u> </u>	1.0	U	1.0	Ų	1.0	U	1.0	U	1.0	U	10	U
m- and p-Xylenes	59	2.0	U	2.0	U	2.0	U	2.0	Ų.	2.0	U	2.0	U	2.0	υ	2.0	Ü	2.0	U
o-Xylene	59	1.0	Ü	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	U	1.0	υ
Toluene	100	1.0	Ü	1.0	U	1.0	Ū	0.64	J	1.0	U	1.0	Ü	1.0	U	1.0	Ü	0.4	J
Trichloroethene	3	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ü
Vinyl Chlor de	0.2	1.0	U	1.0	UJ	1.0	U	1.0	Ū,J	1.0	Ū	1.0	U	1.0		1.0	U,J	1.0	U,J

TABLE A-7
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ11B

Sample Number:	Groundwater	PZ11B	-	PZ11	<u> </u>	PZ118	2	PZ11	-	PZ11	<u> </u>	PZ1	<u> </u>	PZ11	10	PZ11E		l PZ1	
Sampling Date:	Cleanup Goal	11/21/0		05/28/		11/17/0		05/19/		11/30/		06/07		09/13		03/22/0		09/20	·
																			
Groundwater Elevation:	NA NA	592.88		592.5		588.8	_	593.5	_	593.3		593.		592.8		594.39		594	
Well Bottom Elevation:1	NA NA	573.62		573.6		573.6		573.6		573.6		573.		573.0		573.62		573	
Portion of Glacial IJnit:	NA NA	Middle		Midd		Middle	3	Midd		Midd		Midd		Midd		Middle	<u> </u>	Mid	
pH (standard units)	NA NA	7.72		6.98		7.54		7.00		6.84		6.78		6.50		6.75		6.8	
Conductivity (mS/cm)	NA	0.846		0.990	<u> </u>	0.574		0.57		0.44	3	0.36		0.49	10	0.564		0.7	
Turbidity (NTU)	NA NA	329		10		-10		67.0		0		76		0_		()		0	
Inorganic Analytes	Total Control Control		120,000	million of the	· :: 44 4		was .		4,7	lesuit (µg/	<u>L). </u>	du S.		100		Africa 19			
Aluminum	50	370		1,210		396	L	3,510		83.3	J,*	100	ับ	100	Ū	100	U	35.7	j
Antimony	3	4.0	U	4.0_	U	4.0	U	4	U	4	U	4.0	υ	1	~	4.0	U	4	U
Arsenic	0.2	2.0	U	2.0	Ū	2.0	U	1.0	J	2.0	U	2.0	U	2.0	ָ כו	2.0	Ū	2.0	U,"
Barium	2,000	25.1		41.7		28.3		75.6		20.5		18.9	K	21.0		27.3		28.2	J
Beryllium	NA	2.8	Ü	NA		0.5	U	1.0	U	0.5	U,*	1.0	U,L	1.0	Ü	1.00	U	5.0	U
Cadmium	4	575		1,070		1,350		1,150		1,290	- +	846		1,440		459		640	
Calcium	NA	54,700		NA		45,600	K	66,600		37,800		37,800		31,300		53,300		50,100	
Chromium	7,000	48.5		49.2		63.1		65.9		79.1	L.*	52.9		67.7		36,4		27.1	
Cobait	NA	4.2	Ū	NA		2.0	Ū	1.4	J,L	1,2	J,K,*	1.0	U	0.6	J	3.00	U	0.4	J."
Copper	NA	2.6	J	NA		1.9	J	6.1	K.*	3.0	U.*	6.0	Ū	6.0	Ū	1.86	 -	1.10	
iron	NA.	437		NA.		220	<u>-</u> -	3,330	,	101	K,*	16.1	J.K.	30.9	-	23.9	J	21.2	
Lead	5	2.0	Ū	2.0	Ü	2.0	- ū	4.1		2.0	Ü	2.0	U	2.0	- U	3.0	U	15.6	_
Magnesium	NA NA	7,420		NA		8,010		16,400		6,550		5,240		5,100		7,410		7,270	
Manganese	NA NA	31.6	-,-	NA.		63.8		312	*	12.9	Κ.*	6.4	K	22.7		1.22	L	8.7	
Mercury	2	0.5	Ū	0.5	U.L	0.5	Ü	0.1		0.5	Ü	0.5	Ü	0.5	U.L	0.5	Ū	0.5	- i
Nickei	57	18.4	_ <u>~</u>	27.0		28.9		26.5		21.0	ĸ	15.3	ĸ	21.6		7.99	K	11.3	
Potassium	NA NA	3,400	J. K	NA NA		8,270	K,*	3,620	L,*	3,490	ĸ	5,490	K	3,270		2,500		2,440	
Selenium	NA NA	1.2	j	NA.		4.0	U.L	2		2	-;-	2.0	J	2	J	1.2	J	1	j -
Silver	0.1	1.7	Ū	2.0	U	4.0	Ū	4.0	Ū	1.0	J,K	4.0	- ŭ -	4.0	Ü	5.00	- 	10.0	:
Sodium	NA NA	43,400	ĸ	NA	<u>_</u> _	360,000		36,700		30,700		35,200		43.100		58.800		79.900	[
Thallium	0.5	2.0	Ü	2.0	U	4.0	Ü	2.0	U	1.0	U	1.0	U	1.0	U	2.0	U	1.0	
Vanadium	NA	17.0	ŭ	NA NA	<u>_</u> _	10.1	J	3.2	J	20.0	Ü	10.0	Ū	10.0	Ü	5.00	U	0.3	J.K
Zinc	NA	174	<u> </u>	NA		361		317		292		202		289		142		214	
Hexavalent Chromium	2.0	47		43.2		63.7		49.8	J,L	59.7		33.4	J,L	58.8	J,L	38.2	J.L	28.1	J,*
Cyanide	4	6	J	26		31		44		96		30		80		55		32	
Volatile Organic Compounds	<u> </u>	5 mg			1.19			 		esult (ua/	o h istoria:		Andrew .	1. 12					
1,1,1-Trichloroethane	117	1.0	Ú	1.0	U	1.0	Ü	1.0	U.J	1.0	U	1.0	Ü	1.0	Ū	1.0	U	1.0	
1.1-Dichloroethane	700	1.0	Ť	1.0	 Ü	1.0	Ü	1.0	Ü	1.0	- U -	1.0	-ŭ	1.0	ŭ	1.0	Ŭ -	1.0	- - Ŭ
1,2-Dichloroethane	0.4	1.0	Ü	1.0	Ü	1.0	- ö -	1.0	Ü	1.0	-	1.0	-ŭ	1.0	- ö -	1.0	Ü	1.0	- - -
Benzene	1 1	1.0	Ü	1.0	- 	1.0	Ü	1.0	U	1.0	Ü	1.0	- Ū	1.0	- 5 1	1.0		1.0	~ ~
Chloroform	6	1.0	Ü	1.0	Ü	1.0	-51	1.0	U	1.0	- U	1.0	- U	1.0	- ŭ -	1.0	- U -	1.0	-
Ethylbenzene	30	1.0	Ü	1.0	U	1.0	-61	1.0	-	1.0	Ü	1.0		1.0	- ö -l	1.C	- บ -	1.0	
m- and p-Xylenes	59	2.0	Ü	2.0	Ü	2.0	-	2.0	- -	2.0	픕	2.0	- 	2.0	- U -	2.0		2.0	
o-Xylene	59	1.0	Ü	1.0	~ +	1.0	- 5	1.0	-	1.0	Ü	1.0	- u	1.0	U	1.0	- -	1.0	
	100								U								- U -	1.0	
Toluene		1.0	U	1.0	U	1.0	Ų	1.0	-61	1.0	U.	1.0	- Ü	1.0	U	1.0	- U -		Ū.
Trichloroethene	3	1.0	U	1.0	U	1.0	Ų,	1.0		1.0	<u> </u>	1.0		1.0	<u></u>	1.0		1.0	<u> </u>
Vinyl Chloride	0.2	1.0	U	1.0	UJ	1.0	ับ	1.0	C,U	1.0	U	1.0	Ú	1.0	U	1.0	U,J_	1.0	U,J

TABLE A-8
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ11C

Sample Number:	Groundwater	PZ11C		PZ110	_	PZ110	`	PZ11		PZ11	_	PZ11		PZ11	10	PZ1	10	PZ11	
Sampling Date:	Cleanup Goal	11/21/02	,	05/28/0		11/17/0		05/19/		11/30/		06/07/		09/13		03/2		09/20	
Groundwater Elevation:	NA NA			591.13		588.66		593.2		593.0		593.1		589.4		594		594.5	
	- 	592.61																	
Well Bottom Elevation:1	NA NA	556.04		556.04		556.04		556.0		556.0		556.0		556.0		556		556.0	
Portion of Glacial IJnit:	NA NA	Lower		Lower		Lower		Lowe		Lowe		Lowe		Low		Low		Low	
pH (standard units)	NA	8.03		7.95		8.21		8.39		7.73		7.53		7.63		7.€		7.70	
Conductivity (mS/cm)	NA NA	0.637		0.782		0.752	! .	0.66		0.91		0.64	5	0.97	'5	0.7		1.18	
Turbidity (NTU)	NA	2	, 	10	- Balla 24 -	-10		5.0		198		57		0		0	·····	<u> </u>	
Inorganic Analytes 🔧 🚜	~				1 883		7 1 14			esult (µg/l)		. 5 2						al a St. Carl
Aluminum	50	158		266		44.2	L.	60.7	J,L	513	*	100	U	100	U	100	U	28.8	J
Antimony	3	4.0	U	4.0	U	4.0	Ų	4	<u> </u>	8	U	4.0	U	4	U	4.0	U	4	U
Arsenic	0.2	2.0	U	2.0	U	2.0	U	2.0	U	0.9	J	2.0	U	2.0	U	2.0	U	2.0	U
Barium	2,000	56.7		71.4		73.9		65.6		76.8		78.0	K	82.8		87.6		104	
Beryllium	NA	2.8	U	NA		0.5	U	1.0	U	0.5	U,*	1.0	U,L	1.0	U	1.00	U	5.0	U
Cadmium	4	4.3		6.6	K	2.3	K	1.7	K	32.3	Κ,*	1.5	J,K	1.2	J,K	1.07	J	0.8	J
Calcium	NA	51,900		NA		74,200	K	62,100		63,400		63,000		79,000		69,300		88,700	
Chromium	7,000	1.9		6.7		3.1		7.1		6.0	J,*_	8.0		11.6		5.20		7	J,L
Cobalt	NA	4.2	U	NA		2.0	U	2.0	U	1.3	J,K,*	1.0	U	0.6	J	3.00	U	0.40	J.*
Copper	NA	1.6	J	NA		1.7	J	6.0	U,*	3.0	U,L,*	6.0	U	6.0	U	2.73	J	1.3	J,L
Iron	NA	154		NA		51.7		62.3		475	K,*	25.5	K,*	20.0	U,L	50.0	U	19.4	
Lead	5	2.0	Ū	2.0	U	2.0	Ü	2.0	U	2.0	U	2.0	U	2.0	Ü	3.0	U	2.0	U
Magnesium	NA	12,100		NA		20,700		17,800		15,200		14,600		19,000		18,800		22,800	
Manganese	NA	14.3	•	NA		2.1		3.7	•	29.9	K.*	1.4	К	0.4	J	1.0	U	1.6	
Mercury	2	0.5	U	0.5	U	0.5	U	0.5	UJ	0.5	Ü	0.5	Ü	0.5	U,L	0.5	Ü	0.5	U
Nickel	57	2.9		2.3	U	10.0	U	1.5	J	10.0	U	5.1	К	2.8		3.0	U	3.3	J,K
Potassium	NA	2,680	J. K	NA		7,530	K,*	1,300	J.L.*	2,590	K	6,450	K	3,170		2,970		3,380	J
Selenium	NA	4.0	U	NA		8.0	U,L	4	U	4	U .	4.0	U.	4	υ	4.0	IJ	4	U
Silver	0.1	1.7	U	2.0	U	4.0	U	4.0	U	4.0	υ	4.0	U	4.0	υ	5.00		10.0	U
Sodium	NA	39,400	ĸ	NA		709,000		37,100		89,300		65,700		63,600		63,700		83,900	
Thallium	0.5	2.0	U	2.0	U	4.0	U	2.0	U	1.0	U	1.0	U	1.0	U	2.0	U	1.0	U
Vanadium	NA NA	17.0	U	NA		17.2	J	10.0	U	20.0	Ü.L	10.0	U	10.0	U	5.00	U	50.0	
Zinc	NA	13.7	J	NA		13.6	J	30.0	Ū	30.0	Ü	22.5	J	30.0	U	30.0	U	34.3	J
Hexavalent Chromium	2.0	2.9	Ĵ	0.6		4.3	J	3.1	J,L	3.9	L	3.8		4.6	J.L	4.86		5.8	J,*
Cvanide	4	8	U	8	U	8	U.	8	UJ	5	U	5.0	U	3	J	10	U	8	ĸ
Volatile Organic Compounds		120 CO (150 CO)	7. V.	\$ 29 TO C.	· .,	A 9816	3:::	· · · · · · · · · · · · · · · · · · ·		esult (ug/l	. Your		Marian San	Maria Santa	Allen	·		· · · · · · ·	
1,1,1-Trichloroethane	117	1.0	Ü	1.0	Ū	1.0	U	1.0	U.J	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	700	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	Ü	1.0	U
1,2-Dichloroethane	0.4	1.0	Ū	1.0	Ū	1.0	Ü	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	_ ` _
Benzene	1	1.0	Ū	1.0	Ü	1.0	Ū.	1.0	-	1.0	Ü	1.0	Ū	1.0	Ū	1.0	Ū	1.0	-Ū
Chloroform	6	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	
Ethylbenzene	30	1.0	Ŭ	1.0	Ū	1.0	Ü	1.0	Ū	1.0	Ū	1.0	Ü	1.0	Ū	1.0	Ū	1.0	_ _
m- and p-Xylenes	59	2.0	Ü	2.0	Ü	2.0	Ü	2.0		2.0	Ŭ	2.0	Ü	2.0	Ü	2.0	- Ü	2.0	$-\ddot{\upsilon}$
o-Xylene	59	1.0	ÜJ	1.0	Ü	1.0	Ü	1.0	_ U	1.0	Ü	1.0	Ü	1.0	-ŭ	1.0	- ŭ	1.0	ーザー
Toluene	100	1.0	IJ	1.0	- U -	1.0	Ü	1.0	- U	1.0	ū	1.0	U	1.0	- Ū	1.0		1.0	 -
Trichloroethene	3	1.0	Ü	1.0	 -	1.0	Ü	1.0	_ U	1.0	- Ū	1.0	U	1.0	Ü	1.0	Ü	1.0	$-\ddot{\upsilon}$
Vinyl Chloride	0.2	1.0	Ü	1.0	- Ü	1.0	- 0	1.0	U.J	1.0	U	1.0	U	1.0	- บ	1.0	U.J	1.0	U.J
VIII OTIONUG	1 0.2	1.0	U	1.0		I 1.V		1.0		1.0	5	1.0	J	1.0	U		0,5	1.0	U,U

TABLE A-9
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ21

والمراجع	-						***									المساد بعراك			
Sample Number:	Groundwater	PZ21		PZ21		PZ21		PZ2		PZ		PZ:		PZ2		PZ2		PZ:	
Sampling Date:	Cleanup Goal	11/26/0		05/28/0		11/18/0		5.19/		12/01	_	06/08		09/12		03/22/		09/2	
Groundwater Elevation:	NA	594.33	}	593.0	4	593.2	6	593.5	57	593.	.37	593	.15	592.	69	594.0	5	593	
Well Bottom Elevation:1	NA NA	_590.70		590.7	0	590.7	0	590.7	70	590.	70	590	.70	590.	70	590.7	0	590	.70
Portion of Glacial Unit:	NA	Upper		Uppe	r	Uppe	r	Uppe	er	Upp	er	Upp	er	Upp		Uppe		Upp)e).
pH (standard units)	NA	6.83		6.48		7.23		8.24		6.6		6.7		9.2		6.82		6.7	0
Conductivity (mS/cir.)	NA	0.579		0.937		0.740)	0.68	1	0.54	40	0.3		0.77	79	0.393		0.4	
Turbidity (NTU)	NA	18		-10		-10		0.0		0		24	1	0		16.0)	٥.	0
Inorganic Analytes	a sassemin change in the	John Marie La	e e 25	A Profession Commission in	9.55-8 v	The second of th]9 8 er.q	K. Carrier	Resi	ilt (µg/L)	A 22 2 45				W 75.				
Aluminum	50	524	•	328		48.2	J,L*	80.0	U	17.1	J,*	100	Ü	100	Ú	172		122	J
Antimony	3	4.0	C	4.0	U	4.0	Ū	4	IJ	4	U	4.0	U	4	U	4.0	Ū	1	J
Arsenic	0.2	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	Ú	2.0	Ü	2.0	U	2.0	U,J
Barium	2,000	60.6		98.0		102		83.7		72.9		57.5	К	100		73.9		63.6	J
Beryllium	NA	2.8	U	NA		0.3	J,K*	1.0	U	0.2	J,K,*	1.0	U,L	1.0	Ü	1.00	Ú	5.0	U,L
Cadmium	4	810		1,470		1,190	L	668		728	*	827		1,090		1,180		793	
Calcium	NA	58,000		NA		69,200	L	56,000		57,300		46,300		60,200		46,200		45,300	
Chromium	7,000	20.1		16.8		12.6	*	12.3	Ļ	9.8	K,*	11.8		11.7		27.2		38.5	
Cobalt	NA	4.2	Ų	NA NA		1.2	J,K	2.2	L	2.2	K,*	1.3		1.9		1.15	J	1,0	J,K,*
Copper	NA	18.5	L, *	NA		27.3	ĸ	23.5	K,*	16.7	J,*	28.7		31.4		18.4		24.6	J
Iron	NA	444	*	NA		442		630		665	K,*	69.6	K	20.0	υ	235		132	
Lead	5	2.0	U	2.0	U	0.6	J	2.0	Ū	2.0	U	0.5	J	2.0	U	3.0	Ū	2.0	U,J_
Magnesium	NA	10,600	,	NA		12,000		10,600		8,590		6,830		10,100		7,750		7,690	
Manganese	NA	313		NA		379		271	•	136	*	35.3	К	66.3		45.5		37.0	
Mercury	2	0.5	Ū	0.5	U,L	0.5	Ü	0.5	UJ	0.5	U	0.5	Ū,J	0.5	U,L,J	0.5	U	0.5	U.J
Nickel	57	37.2		47.1		39.2		38.6		44.8	K	41.5	•	53.4	*	38.9		39.8	J
Potassium	NA .	5,800	Κ	NA		11,400	K.	7,590	L,*	7,770	K	8,800	K	7,480		5,190		5,660	
Selenium	NA	4.0	C	NA		4.0	U	4	Ū	4	Ū	4.0	U	4	U	4.0	U	4	U
Silver	0.1	1.7	U	2.0	U	4.0	U	4.0	υ	0.9	J,K	4.0	Ū	4.0	U	5.00	U	10.0	U
Sodium	NA	19,700	K	NA		67,700	L	43,800		26,900		20,900		67,800.0		27,700		25,500	
Thallium	0.5	2.0	U	2.0	U	2.0	U	2.0	Ü	1.0	U	1.0	U	1.0	U	2.0	Ū	1.0	U
Vanadium	NA	17.0	U,L	NA		12.2	J	10.0	Ū	20.0	U	10.0	U	10.0	U_	5.00	Ū	1.4	J,K
Zinc	NA	24.0	J	NA		30.1	L	30.4		25.3	J	42.7		35.4	K	90.2		68.1	
Hexavalent Chromium	2.0	10	Ū	10.0	U	10.0	U	10.0	U	1.0	U,L	1.0	U,J,L,	10.0	U,J,L	14.6		34.6	J
Cyanide	4	12	J	12		7	J	18	J	25	*	10	J	4	J	18		13	J,*
Volatile Organi: Compounds		The street of th	O. E. Z.	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A. 1950	(William Carl)	135	"Company or the garage	Rest	ilt (µg/L)		3 114 5	•	. B. 45	9 47 1	-			
1,1,1-Trich oroethane	117	_1.0	U	1.0	U	1.0	Ü	1.0	Ū,J	1.0	U	1.0	U	1.0	U	1.0	Ū	1.0	U
1,1-Dichloroethane	700	1.0	U	1.0	Ü	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ų	1.0	U	1.0	U
1,2-Dichloroethane	0.4	1.0	U	1.0	U	1.0	U	1.0	Ū	1.0	Ū	1.0	U	1.0	U	1.0	U	1.0	U
Benzene	1	1.0	Ü	1.0	Ū,	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.C	Ū
Chloroform	6	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	Ū
Ethylbenziene	30	1.0	U	1.0	Ü	1.0	Ū	1.0	U	1.0	U	1.0	Ū	1.0	U	1.0	Ü	1.0	Ū
m- and p-Xylenes	59	2.0	Ü	2.0	U	2.0	U	2.0	U	2.0	Ū	2.0	Ü	2.0	U	2.0	U	2.0	U
o-Xylene	59	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ū	1.0	Ü	1.0	Ü	1.0	U	1.0	Ū	1.0	Ū
Toluene	100	1.0	Ū	1.0	Ü	1.0	Ŭ	1.0	Ū	1.0	Ü	1.0	Ū	4.3		1.0	Ü	1.0	U
Trichloroethene	3	1.0	Ü	5.1		1.0	Ü	1.8		2.1		5.8	·	0.8		4,2		3.2	
Vinvi Chloride	0.2	1.1		1.0	U	2.6	- j	1.0	U,J	3.0		1.0	Ū	1.0	Ü	0.7	J	1.0	Ū,J

TABLE A-10
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ13A

Sample Number:	Groundwater	PZ13A	 -	PZ13/		PZ13A		PZ13		PZ13	<u> </u>	PŽ13		PZ13) A	PZ13/		PZ13A
Sampling Date:	Cleanup Goal	11/26/02		05/29/0		11/17/0		05/19/		12/01/		06/07/		09/12		03/22/0		09/21/06
Groundwater Elevation:							_							592		593.9		593.93
	NA NA	592.37		592.7		592.65		593.4		593.0		593.0						حسے سے کے ترکی ایک سے میں
Well Bottom Elevation:	NA NA	586.18		586.1	_	586.18		586.1		586.1		586.1		586.		586.1		586.18
Portion of Glacial Unit:	NA NA	Upper		Uppe		Upper		Uppe	<u>- </u>	Uppe		Uppe		Upp		Uppe		Upper
pH (standard units)	NA NA	6.88		7.56		7.78		9.00		7.39		8.34		7.00		7.19		<u> </u>
Conductivity (m:3/cm)	NA NA	1.38		2.200		1.870		1.320		1.360		0.78	1	0.93		1.410		<u></u>
Turbidity (NTU)	NA J	10		-10		00		861.0		344		0		38		0		<u> </u>
inorganic Analytes	* ************************************		~2°28			nie (1 4		esuit	/	, e							
Aluminum	50	48,800		74.3		53.3	<u> </u>	11,200		10,500	_	100	U	146		100	<u>U</u> _	NS
Antimony	3	1.3		4.0	Ú	4.0	υ	4	<u> </u>	4	U	4.0	U	4	U	4	U	NS
Arsenic	0.2	31.8		2.0	C	6.0	C	3.8		7.1		2.0	U	2.0	U	0.5	J	NS
Barium	2,000	689		182		174		159		304		123	K	179		129		NS
Beryllium	NA NA	4.3		NA NA		0.5	U	0.3	J	0.8	_K,*	1.0	U,L	1.0	U	1.00	_U_	NS
Cadmium	4	9,580		439		285		929		1,990		512		412		134		N/S
Calcium	NA NA	393,000		NA		212,000	_ K			146,000		58,100		89,700		44,100		N/S
Chromium	7,000	2,260		7.3		10.1		253		414	L,*	13.9		26.9		10.4		NS
Cobalt	NA	17.5		NA		2.0		4.4	K	8.7	K,*	2.4		1.5		1.33	J	NS
Copper	NA	384		NA		25.2		71.4	Κ,*	145	K,*	9.4		14.9		15.8		NS
Iron	NA	78,400		NA		101		9,640		15,400		12.2	J,K,*	118	<u>K</u>	36.2	J	NS
Lead	5	85.7		2.0	U	6.0		7.4		15.5		0.8	J	2.0	U	3.0	U	NS
Magnesium	NA	115,000		NA		140,000		100,000		82,500		23,100		23,200		54,800		NS
Manganese	NA NA	3,510		NA		37.0		1,000.0	*	3,690		31.6	K	449		5.54		NS
Mercury	2	0.2	J	0.5	U,L	0.1	J	0.1	J	0.5	U	0.5	U	0.5	U,L,J	0.5	U	NS
Nickel	57	1,120		103		103		218	*	438	K	133		104		42.6		NS
Potassium	NA	26,700		NA		32,200	Κ,*	19,800		20,400	K	26,600	<u> </u>	17,100		19,600		NS
Selenium	NA	40.0	U.	NA		40.0	U,L	12	U	3	J_	4.0	U	4	U	1.8	J	NS
Silver	0.1	1.7	U	2.0	C	1.2	J	4.0	U	1.1	J,K	4.0	υ	4.0	υ	5.00	Ū	NS
Sodium	NA	74,300	K	NA		946,000		50,600		70,600		66,700		93,100		115,000		NS NS
Thallium	0.5	20.0	υ	2.0	U	10.0	U	2.0	U	0.5		0.3	J_	1.0	U	2.0	U_	NS
Vanadium	NA NA	68.5	ᆚ	NA		29.0	J	12.6		11.3	<u> </u>	10.0	U	1.6	J	5.00	U	VS
Zinc	NA	3,880		NA		137		476		817		198		163		52.2	J	NS
Hexavalent Chromium	2.0	7.9	J	4.7	J,L	8.7	J	12.7		3.6	L_	3.6	J,L	10.0	U,J,L	7.28		NS
Cyanide	4	306	J	122		125		106	J	206	- •	8		50	J	59		NS
Volatile Organic Compounds	1778年李徽縣 4月		(es 4		5 .	4 - 1		R	esuit	(µg/L) 💎		100	1	1 189	图1000	- 1 c . 1 c . 1	og organizacji	managi as
1,1,1-Trichloroethane	117	1.0	Ų	1.0	U	1.0	Ų	1.0	U,J	1.0	U	1.0	U	1.0	Ü	1.0	U	NS
1,1-Dichloroethane	700	1.0	υ	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	Ū	NS
1,2-Dichloroethane	0.4	1.0	c	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	NS
Benzene	1	1.0	c	1.0	U	1.0	υ	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	NS
Chloroform	6	1.0	S	1.0	Ü	1.0	Ü	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	Ú	NS
Ethylbenzene	30	1.0	U	1.0	U	1.0	Ü	1.0	U,J	1.0	Ú	1.0	U	1.0	U	1.0	U	NS
m- and p-Xylenes	59	2.0	Ü	2.0	U	2.0	Ū	2.0	Ü	2.0	Ü	2.0	U	2.0	U	2.0	U	N/S
o-Xylene	59	1.0	U	1.0	U	1.0	Ü	1.0	Ų	1.0	U	1.0	Ų	1.0	U	1.0	Ū	NS
Toluene	100	1.0	C	1.0	U	1.0	Ū	1.0	U	1.0	U	1.0	Ū	1.0	U	1.0	Ü	NS
Trichloroeth ene	3	2.5		2.0		1.0	Ū	0.58	J	1.0	Ų	13.0		2.2		9.6		NS
Vinyl Chloride	0.2	1.0	U	1.0	U	1.0	Ū	1.0	Ū	1.0	U	1.0	U	10	Ū	l u	J	NS

TABLE A-11
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ13B

																				-	
Sample Number:	Groundwater	PZ138		PZ13		PZ13E		PZ1		PZ1		PZ13	_	PZ13		PZ1		PZ1			38-D
Sampling Date:	Cleanup Goal	11/26/0)2	05/29/	03	11/17/0)3	05/19	/04	12/01	/04	06/07	/05	09/12	/05	03/22	/06	09/2	1/06	09/2	21/06
Groundwater Elevation:1	NA	592.2	3	592.7	0	579.4	5	593.	41	592	88	592.0)3	592.	19	593	.9	594	.31	594	4.31
Well Bottom Elevation:1	NA	571.7	7	571.7	7	571.7	7	571.	77	571.	.77	571.7	77	571.	77	571.	77	571	.77	57	1.77
Portion of Glacial Unit:	NA NA	Middle	•	Midd	e	Middle	3	Midd	ile	Mide	dle	Midd	le	Midd	ile	Mide	tle	Mid	dle	Mix	ddle
pH (standard units)	NA	6.77		7.53		8		9.4	4	7.7	9	7.50)	7.19	9	6.5	9	7.2	4	7.	.24
Conductivity (mS/cm)	NA	0.794		0.85	1	0.993		0.91	3	1.02	20	0.91	3	0.90	96	0.79	99	1.5	90	1.5	590
Turbidity (NTU)	NA	4		-10		-10		10.	0	31	8	0		37		2		C		7	0
inorganic Analytes	- 1 B		· resk	4	350X/2	· .	ናለት ቅንደ		1500	Result	(µg/L)	S (Star		1.7							
Aluminum	50	326	*	1,770		239	L	357		1,580	•	100	U	1,610		100	U	200	U	58.0	J
Antimony	3	4.0	U	4.0	U	4.0	U	4	Ū	8	Ü	4.0	U	4	Ü	_4.0		2	J	4	U
Arsenic	0.2	2.0	U	2.0	U	2.0	U	2.0	Ų	2.0	U	2.0	U	0.5	J	0.7	J	0.9	J,*	0.9	J,*
Barium	2,000	77.1		21.4		79.6		18.8		34.0		29.7	K	46.5		28.8		27.5	J	27.7	J
Beryllium	NA	2.8	U	NA		0.5	Ų	1.0	U	0.5	_J,K,*	1.0	UL	1.0	Ū	1.00	U	5.0	U,L	5.0	U,L
Cadmium	4	47.6		1,380		29.8		2,210		973	•	2,260		1,830		2,260		1,420		1,400	
Calcium	NA	73,300		NA		83,000	K	73,600		94,100		90,900		95,300		72,700		88,500		88,000)
Chromium	7,000	27.4		24.4		25.0		14.2		20.5_	L,*	7.3		42.1		_5.59		2.70	J	3.3	J
Cobalt	NA NA	4.2	U	NA.		2.0	U	0.9	J,K	2.2	K,*	1.9		1.5		1.51	J	0.8	J,K,*	1.	J,K,*
Copper	NA NA	4.4	U,*	NA		4.4		6.0	U,*	3.0	U,L,*	2.0	J	5.7	J	3.99	J	2.3	J	2.6	J
iron	NA	322	•	NA.		193		210		1,160	K,*	21.2	K,	1,500.0		50.0	Ū	62.7	J	93.4	J
Lead	5	2.0	υ	0.7	J	2.0	U	2.0	Ū	1.1	J	2.0	U	2.4	J	3.0		2.0	υ,*	2.0	U,*
Magnesium	NA	18,300		NA		18,600		19,500		19,500		14,600		17,700		11,800		17,500		17,500)
Manganese	NA NA	11.8		NA		9.1		187	*	445	•	688	К	370		214		589		599	
Mercury	2	0.5	Ü	0.5	U	0.5	Ü	0.5	UJ	0.5	U	0.5	U	0.5	U,L,J	0.5	<u>U</u>	0.5	U,J	0.5	U,J
Nickel	57	6.9		102		26.9		141	•	49.7	K	179		120		169		58.9		58.5	
Potassium	NA NA	2,950	K	· NA		8,320	K,*	5,550	K,*	4,810	_ K	6,380	K	2,780		4,340		3,600	J	3,620	
Selenium	NA NA	4.0	U	NA		8.0	U,L	4	U	4	U	4.0	U	4	U	4.0	U	4	U	4	U
Silver	0.1	1.7	U	2.0	U	4.0	U	4.0	U	4.0	U	4.0	U	4.0		5.00	U	10.0	U	10.0	u
Sodium	NA NA	83,900	K	NA		779,000		66,100		78,900		93,000		61,800		92,100		151,000		148,00	
Thallium	0.5	2.0	U	2.0	U	4.0	Ų	2.0	U	2.0	U_	2.0	U	1.0	U_	2.0	<u> </u>	1.0	U	1.0	Ų
Vanadium	NA NA	17.0	U,L	NA		20.3	J	10.0	U	20.0	Ū	10.0	U	2.2	<u>J</u>	5.00	<u> </u>	0.5	J,K	0.3	J,K
Zinc	NA NA	28.2	J_	NA	,	31.2		1,800		522		2,150		1,180		2,240		819		835	
Hexavalent Chromium	2.0	18		10.0	U,J,Ū	20.2		10.0	<u> </u>	1.0	U,L	1.0	U,L,J	10.0	U,J,L	10.0	<u> </u>	10.0	U,J.L	10 0	U,J,L
Cyanide	4	32	ر ل	5	<u> </u>	21	77.00	4	J	3	J	2.0	Ų	2	J_	10	<u> </u>	3	J,*_	44	J,K
Volatile Organic Compounds		Marin Sin					सम्ब	9.00	77	Result		assault its	<u> </u>			·	 			<u> </u>	
1,1,1-Trichloroe hane	117	1.0	U	1.0	U	1.0	U	1.0	U,J	1.0	U	1.0	U	1.0	U	1.0	L	1.0	U	1.3	Ü
1,1-Dichloroethane	700	1.0	U	1.0	U	1.0	Ų	1.0	U	1.0	U	1.0	U	1.0	U	1.0		1.0	U	1.0	U
1,2-Dichloroethane	0.4	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ü
Benzene	1	1.0	U_	1.0	. U	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	U	1.0	IJ	1.0	Ü	1.0	U
Chloroform	6	5.6		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	IJ	1.0	U	1.0	U
Ethylbenzene	30	1.0	U	1.0	U.	1.0	U	1.0	U,J	1.0	U	1.0	U	1.0	U.	72.0		19		13	
m- and p-Xylenes	59	2.0	U	2.0	U	2.0	U	2.0	<u>U</u>	2.0	U	2.0	U	2.0	U	110.0		1.8		1.8	J
o-Xylene	59	1.0	υ	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	47.0		1.0	U	1.0	υ
Toluene	100	1.0	U	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	U	1.2		1.0	U_	1.0	U
Trichloroethene	3	1.0	U	1.0	U	1.0	U	0.61	J	1.0	U	1.0	U	1.0	U	1.0	<u> </u>	1.0	Ü	1.0	U
Vinyl Chloride	0.2	1.0	Ų,	1.0	U	1.0	U,J	1.0	U	1.0	Ü	1.0	U	1.0	Ù	1.0	UJ	1.0	U,J	1.0	U,J

TABLE A-12
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ13C

																						_		,	
Sample Number:	Groundwater	PZ13C		PZ13		PZ130		PZ13C-		PZ13		PZ1		PZ130		PZ13C-		PZ1		PZ13		PZ130			13C
Sampling Date:	Cleanup Goal	11/26/0		05/29/		11/17/0		11/17/0		05/19/		12/01		06/07/0		06/07/0	_	09/12		03/22		03/22			1/06
Groundwater Elevation:	NA NA	592.19		592.8	2	570.32		570.32		593.2	27	592	67	592.9		592,92		591.		593.6		593.6			4.38
Well Bottom Elevation.	NA NA	552.86	3	552.8	6	552.86	<u> </u>	552.86		552.8	36	552	.86	552.8		552.86	5	552.	.86	552.8	36	552.8	16		2.86
Portion of Glacial Unit	NA NA	Lower		Lowe	Г	Lower		Lower		Lowe	er	Low	rer	Lowe	r	Lower		Low	rer	Lowe		Lowe	er	Lo	NOF
pH (standard units	NA	7.62		8.12		8.15		8.15		7.11		8.0		7.60		7.60		7.6		7.42		7.42		7	.51
Conductivity (mS/c n)	NA NA	0.880		0.90		0.508		0.508		0.88	6	0.6	75	1.170)	1.170		0.96	62	1.34	0	1.34	0	0.	789
Turbidity (NTU)	NA	5		-10		-10		-10		8.0		16		0		0		0		1		1			()
Inorganic Analytes		19. Sec. 18.	486	in the second		1 1	30.1			900 26	· .	Result	(pg/L)			1.41				* * 3					
Aluminum	50	137	•	493		126	L	124	L_	106		22.3	J,*	100	U	100	Ü	100	U	100	J	100	U	31.7	J
Antimony	3	4.0	<u> </u>	4.0		4.0	U	4.0	U	4	U	4	Ų	4	Ų	4.0	U_	4	U	4.0	J	4.0	ŢŲ_	4	U
Arsenic	0.2	2.0	Ú	2.0	U	2.0	Ū	2.0	Ü	2.0	U	1.0	J	2.0	U	2.0	U	2.0	U	2.0	ij	2.0	Ū	2.0	Ū,*
Barium	2,000	14.2		66.4		8.8		8.2		72.6		35.4		80.7	K	80.0	K	47.2		56.3		55.5		62.8	J
Beryllium	NA NA	2.8	Ū	NA		0.5	U	0.5	Ü		U	0.1	J,K,*	1,0	U,L	1.0	U,L	1.0	U	1.00	ij	1.00	U	5.0	U,L
Cadmium	4	1,680		62.4		661		657		19.4		26.0	К,*	26.7		26.7		36.5		38.4		35.8		16.3	
Calcium	NA.	62,200		NA	_	64,600	K	63,600	ĸ	69,800		57,600		95,900		97,100		73,600		80,000		80,500		72,300	
Chromium	7,000	3.0		27.9		3.8		2.9		45.4		14.2	L,*	43.7		45.1		32.7		44.1		41.9		37.7	
Cobalt	NA	4.2	Ū	NA		2.0	U	2.0	_	0.5	J,K	1.0	J,K,*	0.6	J	1.0	U	0.3		0.949	 -	3.00	Ū	5.0	IJ,*
Copper	NA NA	2.0	L,*,J	NA		2.0	J	1.1	J	4.5	J,K,*	3.0	U,L,*	4.4	J	4.5		5.1	J	10.0		8.70		4.8	J,*
Iron	NA	107		NA		118		108		68.0		51.5	K,*	24.8	Κ,*	23.5	K,*	6.5	J	38.1		50.0	Ū	45.9	J
Lead	5	2.0	U	2.0	υ	2.0	υ	2.0	υ	2.0	υ	2.0	υ	2.0	υ	2.0	υ	2.0	υ	3.0	ιj	3.0	υ	2.0	U,*
Magnesium	NA	13,400		NA		11,700		10,500		15,800		15,700		20,000		19,900		15,000		18,300		18,100		16,300	
Manganese	NA	247		ÑA		232		239		5.9	•	8.9	K,*	11.0	К	11.2	К	60.0		0.689	٦,	0.565	_ j_	38	J
Mercury	2	0.5	Ü	0.5	U,L	0.2	J	0.2	J	0.5	UJ	0.5	U	0.5	U	0.5	C	0.5	U,L,J	0.5	U	0.5	-U	0.5	U,J
Nickel	57	159		6.6	L	40.1		36.4		30.3	•	24.8	ĸ	44.4		45.1		43.2		39.9		37.6		2C.8	 j
Potassium	NA NA	4,230	ĸ	NA		6,560	K,*	6,330	Κ,*	5,540	K,*	2,140	К	8,040	K	8,050	К	4,060.0		3,360		3,320		5,190	
Selentum	NA	4.0	c	NA		8.0	Ū,L	8.0	U,L	4	U	4	U	1	Ĺ	1.0	۲.	4	J	4.0	Ti)		Ü	4	Ū
Silver	0.1	1.7	U	2.0	U	4.0	U	4.0	Ü	4.0	U	1.3	J,K	4.0	C	4.0	c	4.0		5.00		5.00	U	1C.0	Ū
Sodium	NA NA	86,300	K	NA		837,000		871,000		71,000		44,200		107,000		109,000		70,600		137,000		139,000		90,400	
Thallium	0.5	2.0	Ü	2.0	U	4.0	U	4.0	U	2.0	<u></u>	1.0	U	1.0	c	1.0	c	2.0	U	2.0	T)	2.0	Ū	1.0	Ü
Vanadium	NA NA	17.0	C	NA		17,0	J	11.7	_	10.0		20.0	U	10.0	U	10.0	ς	10.0	U	5.00	$\neg \sigma$	5.00	U	0.5	K,J
Zinc	NA NA	1,220		NA		457		452		10.4	J,K	13.5	J	27.8	J	24.7	J	18.4	_J,K	15.3	٦,	15.7	J	40.6	
Hexavalent Chromium	2.0	10	U	18.1	J,L	3.2	J	3.5	1	34.5		14.4	L	26.6		26.9		24.2	J,L	37.7		37.2		40.3	
Cyanide	4	8	J	24		8	U	8	U	28	J	20		18		8		24	J	25		25		64	J
Volatile Organic Compounds:		**		Market and		14 mg 15 mg	75	and the second	\$1000	1 1111	1.74	Result	(ug/L)	Way Y	2.	12 to 1 to 1		. 25	*						
1,1,1-Trichloroetharie	117	1.0	U	1.0	U.	1.0	U	1.0	U	1.0	Ų,J	1.0	U	1.0	U	1.0	U_	1.0	υ	1.0	Ü	1.0	Ū	1.0	J
1,1-Dichloroetharie	700	1.0	U	1.0	C	1.0	C	1.0	U	1.0	U	1.0	U	1.0	Ū	1.0	٥	1.0	U	1.0	Ų.	1.0	Ū_	1.0	J
1,2-Dichloroethane	0.4	1.0	Ü	1.0	Ü	1.0	C	1.0	U	1.0	U	1.0	Ú	1.0	U	1.0	U	1.0	Ü	1.0	ĹĴ	1.0	U	1.0	J
Benzene	1	1.0	U	1.0	C	1.0	C	1.0	U	1.0	U	1.0	U _	1.0	Ü	1.0	٦	1.0	U	1,0	_ Li	1.0	Ū	1.0	J
Chloroform	6	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	Ų	1.0	U	1.0	c	1.0	C	1.0	U	1.0	Ĺĺ	1.0	U	0.54	J
Ethylbenzene	30	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U,J	1.0	U	1.0	C	1.0	٦	1.0	U	1.0	LI	1.0	U_	1.0	
m- and p-Xylenes	59	2.0	U	2.0	C	2.0	U	2.0	U	2.0	U	2.0	U	2.0	Ų	2.0	U	2.0	U	2.0	_ U	2.0	U	2.0	ij.
o-Xylene	59	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0		1.0	Į.	1.0	U	1.0	J.
Toluene	100	1.0	Ű	1.0	U	1.0	Ū	1.0	Ū	1.0	U	1.0	_ U	1.0	U	1.0	Ü	1.0	U	1.0	ī.	1.0	Ü	1.0	Ū
Trichloroethene	3	1.0	Ü	1.0	Ü	1.0	U	1.0	Ū	1.0	U,J	1.0	U	1.0	Ų	_1,0	Ū	1.0	Ü	1.0	U	1.0	Ü	1.0	IJ
Vinyl Chloride	0.2	1.0	U	1.0	U	1.0	U.J	1.0	U.J	1.0	Ū	1.0	U	1.0	c	1.0	٥	1.0	U	1.0	UJ	1.0	U	1.0	U.J

TABLE A-13
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ05C

		 		Bass		57050	0.7050		7 8787	7 55050			
Sample Number:	Groundwater	PZ05C	PZ05C-D	PZ05C	PZ05C	PZ05C	PZ05C	PZ05C-D	PZ05C	PZ05C	PZ05C	P205C	
Sampling Date:	Cleanup Goal	11/26/02	11/26/02	05/29/03	11/17/03	05/20/04	12/01/04	12/01/04	06/09/05	09/12/05	3/23/2006	9/21/2006	<u></u> ₩
Groundwater Elevation:	NA NA	591.92	591.92	592.57	580.53	593.04	592.38	592.38	592.92	591.43	593.30	594.41	1
Well Bottom Elevation:	NA NA	538.07	538.07	538.07	538.07	538.07	538.07	538.07	538.07	538.07	538.07	538.07	#
Portion of Glacial Urit:	NA NA	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	
pH (standard units)	NA NA	7.98	7.98	8.01	8.27	7.93	8.18	8.18	6.51	7.93	9.18	7.72	
Conductivity (mS/cm)	NA NA	0.742	0.742	0.651	0.672	0.668	0.760	0.760		0.866	0.777	0.472]
Turbidity (NTU)	NA_	0	0	-10	-10	1.0	6	6	L	0	44	00	
Inorganic Analytes	(A) 20 M 3 M 4 C.		- 1	50 . * Jak	7	Result		<u> </u>		· · · · · · · · · · · · · · · · · · ·	1 100	,	
Aluminum	50	53.4	45.5	12.0 J	25.3 J.L	61.3 J	40.0 U,L,*	25.4 J,*	100 U	100 U	100 U		U
Antimony	3	4.0 U	4.0 U	4.0 U	4.0 U	4 U	8 U	4 U	4.0 U	4 U	4.0 U	4 L	
Arsenic	0.2	2.0 U	2.0 U	2.0 U	0.6 J	0.6 J	1.8 J	0.6 J	0.5 J	0.5 J	0.6 J		
Barium	2,000	62.8	59.9	55.5	66.7	69.2	79.0	79.9	84.9 K	92.2	102	62.6 J	
Beryllium	NA NA	2.8 U		NA	0.5 U	1.0 U	0.2 J,K,*	0.2 J,K,*	1.0 U.L	1.0 U	1.00 U	5.0 U,	
Cadmium	44	3.2	1.2	1.3 U	1.1 J,K	1.0 U	9.4 J,*	8.2 J,*	0.5 J,K	2.0 U	2.00 U	5.0 U	ᆀ
Calcium	NA NA	59,500	58,200	NA	58,000	56,900	62,300	62,500	61,900 K	66,500	65,300	50,500	
Chromium	7,000	0.9 U	0.9 U	1.3 U,L	4.3 J	11.7	3.6 J,*	3.5 J.*	5.1 J,K	17.8	5.11		
Cobalt	NA NA	4.2 U	4.2 U	_NA	2.0 U	0.4 J,K	1.4 J.K,*	1.4 J,K,*	0.4 J	0.4 J	3.00 U	50.0 U.	_
Copper	NA NA	4.4 U,*	4.4 U,*	NA	0.7 J,L	6.0 U,*	3.0 U,L,*	3.0 U,L,*	6.0 U	6.0 L	2.18 J	25.0	
Iron	NA_	_18.9 J,*	16.8 J,*	NA	27.8 J	36.3 L	37.8 K,*	42.3 K,*	92.3 K,*	17.5	88.7	100	4
Lead	5	2.0 U	1.4 J	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	3.0 U		
Magnesium	NA NA	16,700	16,100	NA NA	17,100	16,800	17,500	17,800	15,700	18,800	18,700	14,800	
Manganese	NA NA	10.1	7.7 J	NA	7.0	25.9	7.7 K,*	8.8 K,*	220 K	38.4	47.6		البال
Mercury	22	0.5 U	0.5 U	0.5 U	0.5 U	0.1 J	0.5 U	0.5 U	4.8 K	0.5 J,l_,	0.5 U	0.5 U,	
Nickel	57	1.3 J	1.0 J	2.3 U	10.0 U	2.9 J,K,*	10.0 U	10.0 U	4.8 K	2.0 J,K	3.00 U		<u>u</u>
Potassium	NA NA	1,550 K	1,440 K	NA NA	1,880 J,K*	2,830 K	1,480 K	1,480 K	5,750 K	1,870 .1	1,990	1,220 J	
Selenium	NA NA	40 U	4.0 U	NA	4.0 U	4 U	4 U	4 U	4.0 U	4 1)	4.0 U		<u>U </u>
Silver	0.1	1.7 U	1.7 U	2.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	5.00 U	10.0 U	
Sodium Thallium	0.5	32,000 K	31,300 K	NA NA	39,000 L	40,800	44,700	44,600	48,100	54,800	52,800	30,100	<u>-</u>
	NA NA	2.0 U 17.0 U.L	2.0 U.L	2.0 U	2.0 U	2.0 U 10.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U		U
Vanadium Zinc	NA NA			NA NA	30.0 U	30.0 ປ	20.0 U	8.1 J	10.0 U	را 10.0 د 30.0	5.00 U 30.0 U.L	1.1 J.I 23.6 J	
Hexavalent Chromium	2.0	18.9 J	13.7 J	10.0 U,J,L	5.1 J	2.5 J,L	2.3 L	8.1 J 1.0 U.L	14.1 J	8.5 J,L	4.2	23.6 J	
Cvanide	4	8 0	8 U	8 U	6 J	6 J	5 U	4 .1	11.0 J	11 J	11	2 3.1	
Volatile Organic Compounds	- 4					Result		<u> </u>	11.0	<u> </u>		<u> </u>	<u>~</u> ∥
1.1.1-Trichloroethar e	117	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U.J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	,
1.1-Dichloroe hane	700	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	1.0 U	1.0	
1.2-Dichloroethane	0.4	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	1.0 U	1.0	
Benzene	1	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	1.0 U	1.0	
Chloroform	6	1.0 UJ	1.0 U	1.0 U	1.0 U.J	1.0 U	1.0 U	1.0 U	1.0 U	1.0	1.0 U	1.0	
Ethylbenzene	30	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	
m- and p-Xylenes	59	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0	2.0 U	2.0	
o-Xylene	59	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	
Toluene	100	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1,0 U	1.0 U	1.0 U	1.0	_
Trichloroethene	3	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U.J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_
Vinvl Chloride	0.2	1.0 UJ	1.0 UJ	1.0 U	1.0 U.J	1.0 U,J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U.J	1.0 U.	
VIII O I II O I I U I	U.Z	1.0 03	1.0 0.7	1.0 0	1.0 0,0	1.0 0	UU	1.0	1.0 0	1.0 0	1.0 0,3	<u> 1.0 U,</u>	ا د.

TABLE A-14
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ06A

Sample Number:	Groundwater	PZ06A		PZ06A-	D I	PZ06	Ā	PZ06A		PZ06	A	PZ06	1	PZ06	A	PZ06	A	PZ06	A	PZ)6A
Sampling Date:	Cleanup Goal	11/26/0	2	11/26/0	2	05/29/	03	11/17/0	3	05/19/	04	12/01/)4	06/08/	05	09/12/	05	3/23/20	006	9/20/	2006
Groundwater Elevation:1	NA NA	593.05		593.05	,	593.0	6	598.82		593.8	0	593.4		593.3	2	592.7	8	594.1	2	594	.05
Well Bottom Elevation:1	NA NA	578.31		578.3		578.3	1	578.31		578.3	1	578.3	1	578.3	1	578.3	1	578.3	11	576	.31
Portion of Glacial Unit:	NA NA	Middle		Middle		Middl		Middle		Middl		Middl		Middl		Middl		Midd			ldle
pH (standard units)	NA	7.58		7.58		8.02		8.32		8.64		7.88		7.30		7.69		7.82		7.	
Conductivity (rnS/cm)	NA NA	0.598		0.598		0.76		0.541		1.170		1.02				0.76		0.60	8	0.5	
Turbidity (NTU)	NA NA	1	$\neg \neg$	1		-10		-10		2.0		0				0		0			ĵ:
Inorganic Analytes	was a salah karangan dari dari dari dari dari dari dari dari	190 1910 11 11 11	<i>(</i>	CONSTRUCTION OF		and the same of the same of		The second second	1 1,15	Result	(Hart	Pare 1771	Section 1	(7) Y.	17, + 21			**		2 15 19 11	- 1.27 mm - 5
Aluminum	50	110	•	102	*	31.9		20.0	J,L	80.0	U	3,250	*	100	U	100	U	100	U	200	U
Antimony	3	4.0	U	4.0	Ü	4.0	U	4.0	U	4	Ū	8	C	4.0	U	4	U	4.0	U	4	U
Arsenic	0.2	2.0	U	2.0	Ü	2.0	U	2.0	U	2.0	Ù	4.7		2.0	U	2.0	Ü	2.0	Ü	2.0	U,*
Barium	2,000	70.8		69.8		83.9		59.2		134		243		112	К	102		93.0		82.7	J
Beryllium	NA	2.8	U	2.8	Ü	NA		0.2	J,K	1.0	7	0.8	K,*	1.0	UL	1.0	U	1.00	U	5.0	Ū
Cadmium	4	1.0	J	1.0	Ū	12.4		1.9	K,J	3.3		29.5	K,*	2.9	K	10.0		2.93	J	3.70	J
Calcium	NA	54,000		53,000		NA		51,900		79,000		55,700		73,600	K	70,400		75,200		70,900	
Chromium	7.000	4.3		4.2		4.6	T	3.3	J	16.1		68.6		12.5		12.4		5.42		4.3	J
Cobalt	NA	4.2	U	4.2	Ü	NA		2.0	Ū	2.0	Ū	7.0	K,*	1.0	U	1.0	U	3.00	Ū	50.0	Ü,*
Copper	NA	4.4	U.*	4.4	Ú.*	NA		2.6	J,L	9.4	K.*	99.9	Κ*	6.0	U	6.0	U	2.49	J	1.6	J,*
Iron	NA NA	81.2	*	71.7	*	NA		30.0	Ü	30.0	Ü	20,400	•	20.0	U	20.0	U	50.0	Ü	100	Ū
Lead	5	2.0	U	2.0	C	2.0		4.0	Ū	2.0	Ū	11.9		1.0	J	2.0	Ū	3.0	Ū	2.0	U,*
Magnesium	NA	11,900		11,700		NA		15,200		21,100		11,500		15,800		17,800		22,600		19,800	
Manganese	NA NA	8.2	-1	6.8	- 1	NA		0.9	J	0.5	J.L.*	359	•	0.2	J,K	1.0	U	0.914	Ĵ	2.5	J
Mercury	2	0.5	U	0.5	Ü	0.5	U,L	0.2	J	0.5	ÜĴ	0.5	υ	0.5	Ū,J	0.5	U,L,J	0.5	Ú	0.5	U
Nickel	57	5.6		5.4		15.1		3.9	J	12.7	K,*	120	ĸ	10.4	K,*	10.3	K,*	6.59	K	6.8	J
Potassium	NA	2,710	K	2,670	ĸ	NA		7,160	Κ,*	2,350	K,*	4,830	K	8,380	ĸ	4,710	K	1,900		1,430	J
Selenium	NA	4.0	U	4.0	U	NA		8.0	U,L	4	U	4	Ū	4.0	U	4	U	4.0	Ū	4	U
Silver	0.1	1.7	U	1.7	U	2.0	Ū	4.0	U	4.0	Ū	1.9	J,K	4.0	U	4.0	U	5.00	Ū	10.0	U
Sodium	NA	21,600	К	21,200	К	NA		838,000		125,000		152,000		35,500		35,900		27,800		23,300	
Thallium	0.5	2.0	U	2.0	U	2.0	Ú	4.0	Ü	2.0	U	0.3	J	1.0	U	1.0	U	2.0	Ū	1.C	U
Vanadium	NA	17.0	U,L	17.0	Ü,L	NA		10.1	J	10.0	U	8.1	J	10.0	U	10.0	U	5.00	U	0.9	J,K
Zinc	NA	36.0	U	36.0	U	NA		30.0	U	30.0	Ū	58.4		11.5	J	30.0	U	30.0	Ü,L	29.0	
Hexavalent Chromium	2.0	5.1	J	6.2	J,L	5.5	J,L	3.9	J	6.2		7.7	L	15.2	J,L,*	3.6	J,L	5.36	J	3.5	J,*
Cyanide	4	8	U	8	U	- 8	Ü	В	U	8	IJ	5	U	5	U,J	5	U,J	10	Ü	5	U,J,*
Volatile Organic Compounds	3 P. N. S. C. S. S. C. S	The state of	100	·	45h	VA 55 CG		Territoria (Contract)	1.343	Result	(ug/L)	9	Steel S							
1,1,1-Trichloroethane	117	1.0	U	1.0	C	1.0	Ü	1.0	U	1.0	Ū,J	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	700	1.0	U	1.0	U	1.0	Ū	1,0	Ū	1.0	U	1.0	Ū	1.0	Ü	1.0	Ū	1.0	U	1.0	Ü
1,2-Dichloroethane	0.4	1.0	U	1.0	U	1.0	Ū	1.0	Ū	1.0	U	1.0	U	1.0	Ü	1.0	ΰ	1.0		1.0	Ū
Benzene	1	1.0	U	1.0	U	1.0	Ū	1.0	Ū	1.0	U	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	
Chloroform	6	1.0	U	1.0	U	1.0	Ū	1.0	U	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	U
Ethylbenzene	30	1.0	Ü	1.0	C	1.0	Ū	1.0	Ū	1.0	Ū,J	1.0	Ū	1.0	Ü	1.0	U	1.0	Ū	1.0	U
m- and p-Xyleries	59	2.0	- U 1	2.0	U	2.0		2.0	Ū	2.0	U	2.0	Ū	2.0	- ù	2.0	-	2.0	Ū	2.0	
o-Xylene	59	1.0	Ü	1.0	ŭ	1.0	Ű	1.0	- 	1.0	- ŭ	1.0	- Ū	1.0	Ü	1.0	- -	1.0	- Ū	1.0	-
Toluene	100	1.0	Ü	1.0	Ü	1.0	Ū	1.0	Ü	1.0	Ť	1.0	- -	1.0	- Ū	1.0	Ū	1.0	- <u></u> 0	1.0	— -
Trichloroethene	- 3	1.0	Ü	1.0	Ü	1.0	- Ŭ	1.0	Ü	1.0	Ū.J	1.0	- Ŭ-	1.0	- ŭ	1.0	Ü	1.0	- ŭ	1.0	 -
Vinyl Chloride	0.2	1.0	ᇹ	1.0	Ü	1.0	Ť	1.0	Ű.J		17	1.0	- Ū	1.0	Ŭ	1.0	Ū	1.0	Ū.J	10	

TABLE A-15
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ06B

Sample Number:	Groundwater	PZ06	B	PZO	6B	PZ066		PZ06	B	PZ06E	3-0	PZ0	6B	PZ06	R	PZ06	R .	PZ06	iB.	P7	06B
Sampling Date:	Cleanup Goal	11/26/0		05/29		11/17/0		05/19/		05/19/		12/01		06/08/		09/12		3/23/2			2006
Groundwater Elevistion:	NA	592.8		593		592.6		593.7		593.7		593		593.3		592.		594.0			4.05
Well Bottom Elevation:	NA.	557.8		557		557.8		557.8		557.8		557.		557.8		557.		557.8			7.81
Portion of Glacial Unit:	NA NA	Lowe		Lov		Lowe		Lowe		Lowe		LOW		Lowe		Low		Low			wer
pH (standard units)	NA NA	7.68		8.2		8.34		8.86	_	8.86		8.3		7.18		8.19		7.9			13
Conductivity (mS/cm)	NA .	0.752		0.7		0.586		0.52		0.52		0.4				0.46		0.62			60
Turbidity (NTL.)	NA	0		-1		-10		1.0		1.0		0				0		0			0
inorganic Amilytes	The state of the s	7 3 YE 10 W	4. 15mp.	298 N. 1915	13-15-1	1	1.00	1.52 W Y	Congress	Resu	ft (ug/l	1: 186 18	Section 1								
Aluminum	50	50.7	*	15.9	J	17.2	J,L	80.0	U	80.0	U	20.4	J.*	100	IJ	60.1	J	100	Ū	200	Ū
Antimony	3	4.0	U	4.0	U	4.0	Ü	4	U	4	U	4	Ú	4.0	Ū	4	U	40	U	4	Ū
Arsenic	0.2	2.0	U	2.0	Ū	2.0	U	2.0	U	2.0	Ū	2.0	U	2.0	U	2.0	U	2.0	U	2.0	IJ,*
Barium	2,000	70.4		71.2		63.5		58.7		57.0		46.8		86.6	К	47.8		88.9		103	
Beryllium	NA	2.8	U	NA		0.5	U	1.0	U	1.0	Ű	0.4	J,K,*	1.0	U,L	1.0	U	1.00	Ū	5.0	U,L
Cadmium	4	1.0	U	1.3	Ü	1.2	K,J	1.0	U	1.0	U	5.9	J,*	0.5	J,K	2.0	Ū	2.00	U	5.0	Ū
Calcium	NA NA	63,300		NA		55,900		45,900		46,000		39,600		69,700	К	43,000		72,400		77,800	
Chromium	7,000	0.9	U	1.3	U,L	0.8	J	6.0		6.5		0.9	J,*	3.5	J	3.1	J	5.00	Ū	0.5	J
Cobalt	NA	4.2	Ü	NA		0.7	J,K	0.9	J,K	1.1	J,K	1.3	J,K,*	0.3	J	0.3	J	3.00	Ū	50.0	U,*
Copper	NA	4.4	U,*	NA		4.2	L	2.6	J,K,*	3.6	J,K,*	3.0	U,L,*	6.0	U	6.0	U	3.14	J	25.0	ū
Iron	NA	42.0	U,*	NA		13.5	Ţ	7.3	J,L	5.3	J,L	49.0	Κ,*	12.9	J,K	26.2	J	50 0	Ū	100.0	U
Lead	5	2.0	C	2.0	Ū	2.0	U	2.0	U	2.0	Ü	2.0	U	2.0	Ü	2.0	U	3.0	Ü	2.0	U.*
Magnesium	NA	18,200		NA		16,300		13,900		13,600		11,200		18,500		12,600		21,500		23,500	
Manganese	NA	8.6	C	NA		2.6		1.9	_ L,*	1.5	L,*	3.1	K,*	1.2	K	7.0		2.33		1.9	J
Mercury	2	0.5	c	0.5	U,L	0.2	J	0.5	Û	0.5	UJ	0.5	Ū	0.5	U,J	0.5	U,L,J	0.5	Ú	0.5	IJ
Nickel	57	1.2	_	2.3		10.0	Ū	3.5	J,K,*	3.2	J,K,*	10.0	U	4.0	Κ,*	1.2	J _. K	3.00	U	40.0	IJ
Potassium	NA	1,360	K	NA		6,630	Κ,*	1,630	J,K,*	1,680	J,K,*	1,060	K	5,620	K	967	J	1,260		1,420	.j
Selenium	NA	4 0	C	NA		8.0	U,L	4	C	4	Ū	4	U	4.0	u	4	Ü	4.(1	U	4	ij
Silver	0.1	1.7	C	2.0	Ü	4.0	U	4.0	U	4.0	Ū	1.0	J,K	4.0	U	4.0	U	5.00	U	10.0	IJ
Sodium	NA	28,300	K	NA		792,000		25,600		25,700		16,400		26,800		18,500		29,300		36,500	
Thallium	0.5	2.0	υ	2.0	ບ	2.0	U	2.0	υ	2.0	U	1.0	<u> </u>	1.0	<u> </u>	1.0	Ų	2.0	ับ	1.0	U
Vanadium	NA	17.0	Ü,L	NA		9.8	J	10.0	U	10.0	U	20.0	U	10.0	U	10.0	U	5.00	U	1.3	J,K
Zinc	NA	36.0	U	NA		30.0	U	30.0	Ü	30.0	U	30.0	U	12.4	J	30.0	Ų	30.0	ŪĻL	30.8	,
Hexavalent Chromium	2.0	10	c	10.0	UJ,L	10.0	U	10.0	U	10.0	U	1.0	U,L	1.0	U,L,J	10.0	U,J,L	10.0	U,J	10.0	U,J,L
Cyanide	4	8	U	8	U	8	υ	8	ບນ	<u>B</u>	UJ	5	υ	5.0	U,J	5	U,J	10	U	55	U,J,*
Volatile Organi≳Compounds		<u> </u>	J. 1,300	. 8 00 JA 300		92 65 65	50 X 2	<u> </u>			lt (ug/l		έ _{να} :	. 1.		,				· .	
1,1,1-Trichloroethane	117	1.0	U	1.0	Ü	1.0	U	1.0	U,J	1.0	U,J	1.0	U_	1.0	U	1.0	U	1.0	U	1.0	<u> </u>
1,1-Dichloroethane	700	1.0	Ų	1.0	U	1.0	<u>U</u>	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	Ü	10	U
1,2-Dichloroethane	0.4	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	<u>u</u>	1.0	Ū	1.0	U	1.0	U
Benzene	1	1.0	U	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroform	6	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Ethylbenzene	30	1.0	U	1.0	C	1.0	Ū	1.0	U,J	1.0	U,J	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
m- and p-Xylenes	59	2.0	U	2.0	U	2.0	U	2.0	Ü	2.0	U	2.0	U	2.0	U	2.0	Ü	2.0	U	2.0	U
o-Xylene	59	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	บ	1.0	U
Toluene	100	1.0	U	1.0	U	1.0	U	1.0	Ū	1.0	U	1.0	U	1.0	U	1.0	<u>u</u>	1.0	U	1.0	U
Trichloroetherie	3	1.0	Ų	1.0	U	1.0	U	1.0	U,J	1.0	U,J	1.0	U	1.0	U	1.0	Ü	1.0	Ū	1.0	U
Vinyl Chloride	0.2	1.0	C	1.0	Ū	1.0	Ü,J	1.0	Ü	1.0	U	1.0	U	1.0	Ü	1.0	Ü	1.0	U,J	1.0	U,cl

TABLE A-16
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ06C

Sample Number:	Groundwater	PZ06C	PZ06C	PZ06C-D	PZ06C	PZ06C-D	PZ06C	PZ06C	PZ06C	PZ06C-D	PZ06C	PZ06C	PZ06C-D	PZ06C
Sampling Date:	Clearup Goal	11/26/02	05/29/03	05/29/03	11/17/03	11/17/03	05/19/04	12/01/04	06/09/05	06/09/05	09/12/05	3/23/2006	3/23/2006	9/21/2006
Groundwater Elevation:	NA NA	592.99	593.01	593.01	593.41	593.41	593.76	593.32	593.31	593.31	592.66	594.09	594.09	594.18
Well Bottom Elevation	NA NA	537.67	537.67	537.67	537.67	537.67	537.67	537.67	537.67	537.67	537.67	537.67	537.67	537.6"
Portion of Glacial Unit:	NA NA	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower	Lower'
oH (standard units)	NA NA	7.73	8.30	B.30	8.41	8 41	7.70	8.24	5.43	5 43	8.24	7.95	7.95	7 35
Conductivity (mS/cm)	NA NA	0 399	0.488	0.488	0.481	0.481	0 388	0 339	0.420	0.420	0.484	0 363	0.363	0.410
Turbidity (NTU)	NA NA	0	-10	-10	-10	-10	1.0	- 303	6	6	37	2	2	0
Inorganic Analytus		F 8 , P 2 , 1 Sec.						(ua/L)		'	<u></u>			
Aluminum	50	26.3 J	8.8 J	8.0 J	22.2 J.L	21.5 J.L		25.3 J.	100 U	100 U	100 U	100 U	100 UT	200 U
Antimony	3	4.0 U	4.0 U	40 U	4.0 U	4.0 U		4 U	4 U	4.0 U	4 U	4.0 U	4.0 U	4 U
Arsenic	0.2	5.9	5.8	5.8	4.7	4.6	4.2	4.1	5.0	4.4	3.5	4.5	4.6	5.5
Banum	2,000	44 9	56.2	56.3	65.7	67.6	53.2	50.1	74.5 K	79.2 K	71.9	71.6	69.2	44.9 J
Beryllium	NA NA	2.8 U	NA	NA	0.3 J,K	0.3 J,H	(10 U	0.4 J,K,	1.0 U,L	1.0 U,L	1.0 U	100 U	1.00 U	5.0 Ü.L
Cadmium	4	10 Ū	2.3 K	1.3 U	1.5 K,J	0.5 K,		12.1 J,*	0.4 J,K	20 U	2.0 U	2.00 U	2.00 U	50 L
Calcium	NA NA	36,400	NA .	NA	45,700	45,300	37,100	31,700	46,500 K	48,700 K	47,800	43,700	43,600	53,200
Chromium	7,000	09 U	1.3 U.L	1.3 U,L	2.0 U	1.2 J	5.1	2.0 U,*	60 U	2.1 J,K	3.4 J	5.00 U		0.4 J
Cobalt	NA NA	4.2 Ū	· NA	NA	2.0 U	0.5 J,K		1.4 J.K,	1.0 U	1.0 U	0.4 J	3.00 U		50.0 U.
Соррет	NA NA	4.4 U,*	NA	NA.	3.0 U,K	1.1 J,L		3.0 U.L.	6.0 U	60 U	60 U	5.00 U		25 0
lron	NA NA	136	NA	NA	180	187	110	188 K.*	204 K.		213	203	197	213
Lead	5	2.0 U	2.0 U	2.0 U	2.0 Ú	2.0 U		2.0 U	2.0 U	2.0 U	0.8 J	3.0 U	3.0 U	2.0 U.
Magnesium	NA NA	9,280	NA	NA	12,200	12,100	10,300	8,290	11,100	11,700	13,500	12,400	12,000	14,000
Manganese	NA NA	59.4	NA	NA	102	111	94.9	76.6 K.*	126.0 K	135 K	116 K	102	99 5	133
Mercury	2	0.5 Ü	0.5 U,L	05 U.L	0.5 U,J	01 J		0.5 U	0.5 U,J	0.5 U.J	0.5 U.L.J	0.5 U	0.5 U	0.5 0.0
Nickel	57	2.7 U	2.3 U	2.3 U	10.0 U	10.0 U		10.0 U	4.7 K	4.8 K	14 J,K	3.00 U		40.0 U
Potassium	NA	964 K	NA	NA NA	3,910 K.*	6,470 K.		958 K	5,000 K	5,360 K	981 J	1,050 4.0 U	1,060 4.0 U	1,090 J
Selenium Silver	0.1	4.0 U	20 U	2.0 U	8.0 U.L.	12.0 U,1		2.1 J,K	4 U	4.0 U		4.0 U	40 U	100 U
Sodium	NA NA	17 U 11,400 K	NA U	NA U	4.0 U 848.000	4.0 U 852.000	12,400	11 300	14.900	15.600	4.0 U	14.900	14.500	15 900
Thallium	0.5	20 U	2.0 U	2.0 U	4.0 U	4.0 U		1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	1.0 U
Vanadium	NA NA	17.0 U.L	NA U	NA O	20.0 U.L	15.6 J		20 0 U	10.0 U	10.0 U	100 U	5.00 U	5 00 U	500
Zinc	NA NA	36.0 U	NA NA	NA NA	30.0 U	30.0 U		30 0 U	30 0 U	30 0 U	30 0 U	30 0 U.L	11.7 J	24.7
Hexavalent Chro num	2.0	10 U	10.0 U.J.L	10.0 U.J.L	10.0 U	10.0 U		1.0 U.L.	1.0 U.J.L	10 U.J.L	10.0 U.J.L	10.0 U.J		100 U.J.L
Cyanide	4	8 0	8 1	8 U	8 U	8 U		5 U	5 U.J	5 U.J	5 U.J	10 U	10 U	5 U.J.
Volatile Organic Compounds	Control of the second			5 10 1 Congress (1)		25 33 5		(ua/L)	<u>, </u>	<u> </u>	<u> </u>		I	
1,1,1-Trichlorgethane	117	10 U	. 1.0 U	1.0 U	1.0 U	1.0 U		1.0 U	1.0 U	1.0 U	10 U	1.0 U	10 U	10 0
1,1-Dichtoroethane	700	10 U	1.0 U	1.0 Ú	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	10 0
1,2-Dichloroethane	0.4	10 Ü	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	10 Ú	10 U	1.0 U	1.0 U	1.0 U	1.3
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0_ U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	6	1.0 U	1.0 U	1.0 U	1.0 U	1.0U	10 ປ	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	30	1.0 U	1.0 U	1.0 U	10 U	1.0 U		10 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 Ú
m- and p-Xylenes	59	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U		20 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	20 U
o-Xylene	59	10U	1.0 U	1.0 U	1.0 U	1.0 U		10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U
Toluene	100	1.0 U	10 U	1.0 U	1.0 U	1.0 U		1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethere	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U		10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl Chlonde	0.2	1.0U_	1.0 U	1.0Ū	1.0 U,J	10 U	1.0U	1.0 U	1.0 U	1.0 U	10 U	10 J.U	1.0 U	1.0 U,J

TABLE A-17
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ14A

Sample Number:	Groundwater	PZ14A	PZ14A	PZ14A	PZ14A-D	PZ14A	PZ14A	PZ14A	PZ14A	PZ14A	PZ14A	PZ14A-D
Sampling Date:	Cleanup Goal	11/20/02	05/29/03	11/18/03	11/18/03	05/20/04	12/01/04	06/08/05	09/14/05	03/21/06	09/20/06	09/20/06
Groundwater Elevation:1	NA NA	592.00	593.09	588.67	58B.67	593.36	592,62	593.54	592.89	595.83	593,48	593.48
Well Bottom Elevation:1	NA	582.89	582.89	582.89	582.89	582.89	582.89	582.89	582.89	582.89	582.89	582.89
Portion of Glacial Unit:	NA	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper
pH (standard uni s)	NA.	7.59	7.59	7.57	7.57	8.45	7.48	6.50	6.69	8.02	7.38	7.38
Conductivity (mS/cm)	NA	0.937	1.07	0.957	0.957	0.763	0.886	1,140	0.960	0.980	0.430	0.430
Turbidity (NTU)	NA NA	0	-10	-10	-10	572.0	844	25	111	0	0	
Inorganic Analytes	79782 C	12.38	2.00	2000		- Resu	t (ug/L)		· · · · · · · · · · · · · · · · · · ·			
Aluminum	50	65.3	25.5	30.8 J,L	63.0 L	7,890	5,630 *	100 U	100 U	100 Ü	200 U	200 U
Antimony	3	4.0 U	4.0 Ü	4.0 Ū	4.0 U	4 U	4 U	4.0 U	4 U	4.0 U	4 U	4 U
Arsenic	0.2	2.0 U	2.0 U	2.0 U	2.0 U	7.7	7.7	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Barium	2,000	30.9	35.9	56.2	54.6	94.4	120	42.0 K	57.4	31.8	21.8 J	22.2 J
Beryllium	NA	2.8 U	NA	0.5 U	0.5 U	0.7 J	0.9 K,*	1.0 U,L	1.0 U	1.00 U	5.0 U	5.0 U
Cadmium	4	38.2	25.3	19.3	18.5	94.9	83.5 K,*	45.7	28.1	50.5	21.6	21.0
Calcium	NA	72,900	NA	75,100	75,000	80,200	77,500	92,500 K	72,000	75,900	63,500	63,0C0
Chromium	7,000	3.9	11.3	2.1 J	2.6 J	164	113 L.*	51.8	6.1	50.6	66.0 L	64.5 L
Cobalt	NA NA	4.2 U	NA	2.0 U	2.0 U	2.9 K	3.8 K,*	0.5 J	0.5J	3.00 U	50 0 U,*	0.3 J,
Copper	NA	2.9 J	NA	3.2 L	3.1 L	78.0 K,*	82.4 J,*	3.0 J	3.7 J	5.72	3.7 J	2.7 J
Iron	NA	34.6 J	NA	1,620	1,580	19,400	17,200 *	134 K	18.7 J,K	77.0	206	216
Lead	5	2.0 U	2.0 U	2.0 U	2.0 U	11.6	8.9	2.0 U	2.0 U	3.0 U	2.0 U	3.2 K
Magnesium	NA	13,100	NA .	14,200	14,800	22,700	14,300	18,300	11,700	17,600	14,500	14,400
Manganese	NA	160	NA	231	223	341	427	55.7 K	191	22.1	19.9	18.1
Mercury	2	0.5 U	0.5 U _, L	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U,J	0.5 U,L	0.5 U	0.5 U	0.5 U
Nickel	57	23.3	25.0	26.2	25.5	77.9 *	78,4 K	29.0 K,*	27.2	26.3 K	18.8 J	18.0 J
Potassium	NA	4,640 J K	NA .	3,580 K,*	3,410 K,*	5,450 K,*	4,180 K	7,980 K	3,890	3,060	1,930 J	1,880 J
Selenium	NA	4.0 U	NA .	4.0 U	4.0 U	4 U_	4 U	4.0 U	4 U	1.5 J	4 U	4 U
Silver	01	1,7 U	2.0 U	4.0 U	4.0 U		2.3 J,K	4.0 U	4.0 U	5.00 U	10.0 U	10.0 U
Sodium	NA .	68,900 K	NA	98,000 L	80,000 L	4-1	85,900	97,100	92,800	89,500	21,800	21,600
Thallium	0.5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U
Vanadium	NA	17.0 U	NA	20.0 U	5.8 J	33.4	27.1 J	10.0 U	2.3 J	2.11	3.9 J	3.8
Zinc	NA NA	11.6 J	NA	30.0 U	30.0 U	33.8 K	41.8	18.9 J	30.0 U	20.1 J	29.4 J	26.4
Hexavalent Chromium	2.0	3.9 L,J	10.0 U,J,L	10.0 U	10.0 U	31.7 J,L	1.0 U,L	33.7 J,L,*	10.0 U,J,L	49.9 J,L	57.4 J,L	59.6 J,L
Cyanide	4	4J	99	7 J	5 J	169 J	40	179 J	6	99	414 J	413
Volatile Organi : Compounds				*****			t (µg/L)*				* **	ilit
1,1,1-Trichloroethane	117	2.2	3.4	2.5	1.0 U	1.0 U,J	1.0	1.0 U	0.8 J	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	700	1.5	1,7	1.9	1.0 U	1.0 U	1.9	1.0 U	1.7 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	0.4	1.0 U	1.0 U	1,0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.9	1.0 U	1.0 U
Ethylbenzene	30	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
m- and p-Xylenes	59	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.(i U
o-Xylene	59	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	3	1.5	1.0	1.0 U	1.0 U	0.57 J	0.7 J	0.7 J	0.8 J	0.5 J	0.37 J	0.39 J
Vinyl Chloride	0.2	1.0 U	0.48 J	1.0 J	1.0 U.J	1.0 U	2.0	08 J	1.0 J	1.0 U.J	1 1.0 U.J	l 1.0 U.

TABLE A-18
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ14B

							1 22/2					55445.5	
Sample Number:	Groundwater	PZ14B	PZ14B	PZ14B	PZ14B	PZ14B	PZ14B-D	PZ14B	PZ14B-D	PZ14B	PZ143	PZ14B-D	P.Z14B
Sampling Date:	Cleanup Goal	11/20/02	05/29/03	11/18/03	05/20/04	12/02/04	12/02/04	Q6/08/05	06/08/05	09/14/05	03/21/06	03/21/06	09/20/06
Groundwater Elevation:	NA NA	591.79	592.06	589.59	593.27	592.48	592,48	592.64	592.64	591.97	594.13	594.13	592.65
Well Bottom Elevation:	NA NA	566.55	566.55	566.55	566.55	566.55	566,55	566.55	566.55	566.55	566.55	566.55	566.55
Portion of Glacial Unit:	NA NA	Middle	Middle	Middle	Middle	Middle	Middle	Middle	Middle	Middle	Middle	Middle	Middle
pH (standard units)	NA NA	8.32	8.11	8.16	8.27	7.76_	7.76	8.75	8.75	7.77	8.72	8.72	7.08
Conductivity (mS/crn)	NA NA	0.606	0. <u>5</u> 96	0.441	0.527	0.437	0.437	0.443_	0.443	0.451	0.491	0.491	C.416
Turbidity (NTU)	NA NA	0	-10	-10	150.0	0	0	00	0	0	0	0	0
inorganic Analytes	16 18 KB (S		19 46			2 1 5 6	Result (µg/L)		1 800		-1,		
Aluminum	50	40.4 J	469	34.9 J,L	1,600	198	6,980	100 U	100 U	100 U	100 U	46.0 J	33.2 J
Antimony	3	4.0 U	4.0 U	4.0 U	4 U	4 U	4 U	4 U	4.0 U	4.0 U	4.0 U	4.0 U	4 U
Arsenic	0.2	2.0 U	2.0 U	2.0 U	0.9 J	2.0 U	3.0 K	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Barrum	2,000	18.5	24.2	18.0	59.0	22.4	136.0	27.7 K	27.5 K	24.2	28.6	29.3	35.3 J
Beryllium	NA NA	2.8 U	NA	0.5 U	0.3 J	1.0 U	0.3 J	1.0 U _i L	1.0 U,L	1.0 U	1.00 U	1.00 U	5.0 U
Cadmium	4	12.5	25.7	26,5	35.1	25.3	108	26	26.2	25.0	22.8	22.9	31.9
Calcium	NA	30,900	NA	52,400	70,500	52,700	232,000	60,600	61,100	52,600	51,200	48,800	65,600
Chromium	7,000	22.6	25.4	19.5	41.0	17.4	44.0	23.7	23.5	21.1	28.8	30.6	15.:? L
Cobalt	NA	4.2 U	NA	0.4 J,K	0.8 J,K	0.3 J,K	2.4 K	1.0 U	0.4 J	1.0 U	3.00 U	3.00 U	50.0 U,*
Copper	NA NA	2.0 J	NA	3.8 L	5.6 J,K,*	3.6 J	54.3	2.5 J	3.1 J	3.6 J	4.37 J	5.63	4.9 J.L
Iron	NANA	41.0 J	NA	36.7	1,750	156	6,850	_17 _ J,K	10.5 J,K	20.0 U	20.2 J	65.5	47.4 J
Lead	5	2.0U	0.7 J	2.0 U	2.2	0.8 J	11.4	2.0 U	2.0 U	2.0 U	3.0 U	3.0 U	2.C U
Magnesium	NA NA	8,720	NA	15,600	19,000	14,900	67,600	13,700	13,900	14,600	12,000	11,700	12,800
Manganese	NA NA	8.6 U	NA	1.8	35.4	5.1 *	392	1 0	1.0 U	1.0 U	0.467 J	2.23 L	1.3 J
Mercury	2	0.5_ U	0.5 U	0.2 J	0.5 UJ	0.5 U	0.5_ U	0.5 U,J	0.5 U,J	0.5 U,L	0.5U	0.5 U	0.E U
Nickel	57	3.0	4.5 L	4.8 J	12.6 K,*	8.7 K	31.4	11.0 K,*	11.0 K,*	8.2	5.97 K	6.49 K	8.8 J
Potassium	NA NA	1,600 J. K	NA	1,620 J,K*	3,200 K,*	3,630 K	4,420 K	5,370 K	5,440 K	2,090	2,420	2,340	2,780 J
Selenium	NA	4.0 U	NA	4.0 U	4 U	4 U	4_ U_	4 U	4.0 U	4.0 U	4.0 U	4.0 U	4 U
Silver	0.1	1.7 U	2.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	5.00 U	5.00 U	10.0 U
Sodium	NA NA	66,800 K	NA	28,600 L	13,100	12,000 L	12,600 L	14,600 L	14,700	12,700	27,300	27,700	17,600
Thallium	0.5	2.0 U	2.0 U	2.0 U	2.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	1.0 U
Vanadium	NA	17.0 U	NA	20.0 U,L	10.0 U	10.0 U	8.4 J	10.0 U	10.0 U	10.0 U	5.00 U	5.00 U	50.0 U
Zinc	NA NA	36.0 U	NA	30.0 U	30.0 U	17.7 J	95.1 U	30.0 U	12.1 J	30.0 U	11.9 J	7.91 J	29.1 J
Hexavalent Chromium	2.0	26	28.7 J,L	20.1	25.8 J,L	11.6 L	1.8 L	12.1 J,L,*	13.4 J,L,*	10.0 U,J,L	30.1 J,L	31.8 J,L	12.3 J,L
Cyanide	4	76 J	15		14 J	6	6	17 J	12 J	6	27	28	14 K
Volatile Organic Compounds		- 18, 78, 1		24/	* ip		Result (µg/L)						
1,1,1-Trichloroethane	117	1.0 UJ	1.0 U	1.0 U	1.0 U,J	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	700	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	0.4	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	1 1	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	6	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	30	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1,0 U
m- and p-Xylenes	59	2.0 UJ	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	1.0 U	2.0 U	2.0 U	2.0 U
o-Xylene	59	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	100	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	3	1.0 UJ	1.0 U	1.0 U	1.0 U,J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl_Chloride	0.2	1.0 UJ	1.0 Ü	1.0 U,J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 J,U	1.0 U	1.0 U

TABLE A-19
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ14C

Sample Number:	Groundwater	PZ14C	: 1	PZ14	C	PZ14	C	PZ14	c l	PZ14	IC.	PZ14	IC .	PZ140	С	PZ14	Ċ	PZ1	4C
Sampling Date:	Cleanup Goal	11/20/0		05/29/		11/18/		05/20/		12/01		06/08		09/14/		03/21/		09/20	
Groundwater Elevation:	NA	591.56	5	592.0		571.9	6	593.1	2	592.2	28	592.4	48	591.7	6	594.1	14	592.	.45
Well Bottom Elevation:	NA.	547.55	.	547.5	55	547.5	5	547.5	5	547.5	55	547.5	55	547.5	5	547.5	55	547.	.55
Portion of Glacial Unit:	NA	Lower		Lowe		Lowe		Lowe	_	Low		Low		Lowe		Lowe		Low	
pH (standard units)	NA	8.45	$\neg \neg$	8.42	?	8.44		8.17		7.99	9	8.50	5	7.83		9.66	3	7.7	9
Conductivity (rnS/crn)	NA	0.514		0.56	4	0.338	3	0.289	•	0.42	5	0.37	0	0.365	5	0.40	0	0.3	57
Turbidity (NTL')	NA	1		-10		-10		45.0		18		0		0		24		()	
Inorganic Analytes 💮 🐇 🍍	Part Jana			grapo Al	52.1		ge . W		Result	(µg/L)	2.62	5% : X				٠.	<u>``</u>		
Aluminum	50	56.3]	45.6		17.7	J,L	80.0	U	234	K,*	100	Ü	100	U	100	U	200	U
Antimony	3	4.0	IJ	4.0	U	4.0	Ū	4	Ü	4	U	4.0	U	4	U	4.0	U .	4	Ū
Arsenic	0.2	2.0	U	2.0	C	2.0	U	0.7	J	1.4	J	2.0	U	0.6	J	0.7	J	0.6	J
Barium	2,000	65.4		52.6		52.7		41.7		65.1		78.7	K	65.2		78.2		78.5	J
Beryllium	NA	2.8	U	NA		0.5	υ	1.0	Ū	0.4	J,K,*	1.0	Ü,L	1.0	U	1.00	Ü	5.0	υ
Cadmium	4	1.2		1.3	U	2.8	K	0.6	J	6.8	J,*	1.0	J,K	1.0	J,K	1.66	J	0.5	J
Calcium	NA	47,300		NA		39,600		29,800		40,900		45,100	K	42,000		46,700		42,700	
Chromium	7,000	0.9	U	1.3	U	2.0	U	4.6		1.3	J,*	2.0	J	2.4	J	5.00	U	0.5	J,L
Cobalt	NA	4.2	U	NA		2.0	υ	2.0	υ	1.0	J,K,*	0.4	J	1.0	U	3.00	U	50.0	U
Copper	NA NA	4.4	U	NA		2.0	J,L	6.0	C.	3.0	U,L,*	6.0	U	6.0	U	1.83	J	0.9	
Iron	NA	19.9	J	NA		10.2	J	10.4	J,L	238	K,*	8.0	J,K	15.6	J,K	20.5	J	100	U
Lead	5	2.0	Ü	2.0	Ų	2.0	U	2.0	U	2.0	U	0.5	J	2.0	J	3.0	J	2.0	U
Magnesium	NA NA	12,900		NA		11,500		8,840		11,100		10,400		11,100		12,000		12,500	
Manganese	NA	49.8	*	NA		42.7		37.0	*	53.6	K,*	52.1	K	77.9		60.4		43.0	
Mercury	2	0.5	U	0.5	U	0.2	J	0.5	UJ	0.5	U	0.1	J	0.5	U,L	0.5	U	0.5	U.
Nickel	57	2.5	Ĵ	1.0	J,L	10.0	U	3.4	J,K,*	10.0	U	6.4	K,*	3.8		2.67	J	3.1	J,K
Potassium	NA	1,150	J, K	NA		1,240	J,K,*	2,320	K,*	1,400	K	5,250	K	969	J	1,020		1,010	
Selenium	NA	4.0	U	NA		4.0	U	4	U	44	U	4.0	U	4	U	4.0	U	4	U.
Silver	0.1	1.7	U	2.0	U	4.0	U	4.0	U	0.9	J,K	4.0	IJ	4.0	U	5.00	U	10.0	U
Sodium	NA	14,700	K	NA		18,300	<u>L</u>	6,740		9,180	K	18,200		9,970		15,000		19,000	
Thallium	0.5	2.0	Ū	2.0	U	2.0	U	2.0	U	1.0	U	1.0	U	1.0	Ü	2.0	U	1.0	U
Vanadium	NANA	17.0		NA		20.0	U,L	10.0	U	20.0	U	10.0	U	1.5	J	1.90	J	2.0	J
Zinc	NA	36.0	Ü	NA		30.0	U	30.0	U	30.0	U	30.0	Ü	30.0	Ü	10.3	J	20.6	J
Hexavalent Chromium	2.0	10	U	10.0	U,J,L	10.0	Ų	10.0	U,J,L	1.0	Ū,L	1.0	U,J,L,*	10.0	U,J,L	10.0	U,J,L	10.0	U,J,L
Cyanide	4	8	Ū	8	U	8	U,J	8	UJ	5	U	5	U,J	5	U	10	U	9	K
Volatile Organic Compounds					J. 1844 **		f grand			(µg/L)	<u>, કેલ્લક</u>		·	<u>,</u>			, N		
1,1,1-Trichloroethane	117	1.0	UJ	1.0	U	2.9		1.0	U,J	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	700	1.0	Ü	1.0	Ų	2.1		1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloroethane	0.4	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ų	1.0	U	1.0	U	1.0	U
Benzene	1	1.0	UĴ	1.0	U	1.0	Ų	1.0	U	1.0	U	1.0	Ü	1.0	Ü	1.0	U	1.0	C
Chloroform	6	1.0	υJ	1.0	υ	1.0	<u> </u>	1.0	υ	1.0	<u> </u>	1.0	Ü	1.0	υ	1.0	υ	1.0	υ
Ethylbenzene	30	1.0	Ū	1.0	U	1.0	Ü	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	Ū
m- and p-Xylenes	59	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	Ü	2.0	U	2.0	U
o-Xylene	59	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	Ü	1.0	Ű	1.0	Ü	1.0	U
Toluene	100	1.0	Ū	1.0	C	1.0	Ū	1.0	C	1.0	Ü	1.0	U	1.0	U	1.0	υ	1.0	C
Trichloroethene	3	1.0	U	1.0	U	0.89	J	1.0	ľ,U	1.0	Ų	1.0	Ü	1.0	C	1.0	U	1.0	U
Vinyl Chloride	0.2	1.0	U	1.0	C	1.1	J	1.0	U	1.0	U	1.0	U	1.0	Ü	1.0	J,U	1.0	U

TABLE A-20
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ15A

Court Name to the second of th	Groundwater	D745A		D745		PZ15A		PZ15	_	PZ15/		PZ15/		PZ15	^	PZ15	-	PZ1	
Sample Number:		PZ15A		PZ15/						12/02/0				09/14/		03/21/		09/19	
Sampling Date:	Cleanup Goal	11/20/0		05/29/0		11/18/0		05/20/	_			06/07/0						 -	
Groundwater Elevation:1	NA NA	592.36	-	592.4	_	593.29		593.5		592.88		592.9		592.4		593.0		593.	
Well Bottom Elevation:1	NA	583.03		583.0		583.03		583.0		583.03		583.03		583.0	-	583.0		583.	
Portion of Glacial Unit:	NA	Upper		Uppe		Upper		Uppe		Upper	•	Upper	<u> </u>	Uppe		Uppe		Upp	
pH (standard units)	NA	7.70		7.40		7.87		8.21		7.46		7.56		6.80		8.70		6.8	
Conductivity (m S/cm)	NA	0.888		6.20		0.920		0.80		1.070		1.160	<u> </u>	0.980	0	1.00	0	0.64	15
Turbidity (NTU)	NA	0		999		-10		834.0		619		0		0		0		0	
Inorganic Analytes	1986 - 4 500 10		ang Panahasa Kanggar		**************************************	12×175	1.13		Result	(μ g/L)			141				1.45	34, 4	
Aluminum	50	73.0		16,000		44.5	L	9,120		5,990		100	U	28.8	J	100	U	200	U
Antimony	3	4.0	υ	4.0	υ	4.0	υ	4	υ	4	υ	4.0	υ	4	υ	4.0	<u> </u>	4	U
Arsenic	0.2	2.0	U	9.5		2.0	U	6.2		3.5	K	2.0	U	2.0	U	2.0	U	2.0	U
Barium	2,000	41.7		181		44.4		125		84.6		70.5	K	47.4		56.5		51.4	J
Beryllium	NA NA	2.8	Ū	NA		0.5	C	0.7	J	1.0	U	1.0	U,L	1.0	ΰ	1.00	U_	5.0	U
Cadmium	4	26.3		156		37.9		115		90.4		33.5		41.2		31.1		25.7	
Calcium	NA	86,900		NA		92,200		110,000		94,100		103,000	K	85,300	K	£3,100		80,300	
Chromium	7,000	8.7		206		3.6	j	169		95.2		37.7		6.4		25.9		29 0	
Cobalt	NA	4.2	U	NA		2.0	U	4.3	K	2.2	K	0.5	J	0.4	J	3.00	U	0.2	*
Copper	NA	4.4	Ü	NA		4.0	L	42.1	Κ,*	25.5		6.0	U	3.1	J	4.38	J_	2.5	J
Iron	NA	18.8	J	NA		28.2	j	15,700		7,390		20.0	U	16.5	J,K	50.0	U	100.0	U
Lead	5	2.0	U	21.1		2.0	U	9.8		6.1		0.5	J	2.0	J	3.0	J	2.3	K
Magnesium	NA	16,000		NA		16,000		27,200		345		16,800		14,800		16,000		14,700	
Manganese	NA	5.9	J	NA		58.4		387	*	79.8		34.2	K	80.6		29.1		38.0	
Mercury	2	0.5	C	0.5	U	0.5	υ	0.5	UJ	0.5	U	0.5	Ū,J	0.5	U,L	0.5	Ü	0.5	Ų
Nickel	57	18.5		117		25.3		99.1	*	79.8		25.1	K,*	30.2		15.9	ĸ	18.1	J
Potassium	NA	5,250	J, K	NA		5,610	Κ,*	9,830	Κ,*	8,130	K	10,500	K	5,890		4,860		5,480	
Selenium	NA	4.0	U	NA		4.0	_	4	Ų	4	U	4.0	U	4	U	4.0	U_	4	Ų
Silver	0.1	1.7	U	1.1	7	4.0	C	4.0	U	4.0	U	4.0	U	4.0	U	5.00	Ū	10.0	U
Sodium	_NA	85,500	К	NA		59,800	Г	50,000		88,700		95,200		86,000		88,400		66,300	
Thallium	0.5	2.0	U	1.3	J	2.0	U	2.0	U	2.0	U	1.0	U	2.0	Ų	2.0	U	1.0	U
Vanadium	NA	17.0	U	NA		20.0	U,L	13.6		9.3	J	10.0	U	10.0	U	5.00	U	0.3	J
Zinc	NA	16.4	J	NA		30.0	υ	31.1	K	43.5	K	13.9	J	12.3	J	6.43	J	31.7	J
Hexavalent Chromium	2.0	10		18.0	J,L	3.2	J	24.5		1.0	U,L	22.8	J,L,*	10.0	U,J,I	25.2	J,L	25.1	J,L
Cyanide	4	7	J	3	J	8	U,J	4	J	5	U	5	U,J	6		10	U	5	J,K
Velatile Organic Compounds	The same of the sa	Property :			Sec. 1			1	lesult	(µg/L)			\$				10		
1,1,1-Trichloroethane	117	1.0	U	1.0	U	1.0	UJ	1.0	U,J	1.0	Ū	1.0	U	1.0	Ū	1.0	Ų	1.0	U
1,1-Dichloroethane	700	1.0	U	1.0	U	1.0	UJ	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ü	1.0	U
1,2-Dichloroethane	0.4	1.0	U	1.0	U	1.0	U,J	1.0	Ų	1.0	U	1.0	U	1.0	Ų	1.0	U	1.0	Ü
Benzene	1	1.0		1.0	U	1.0	U,J	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroform	6	1.0	$\neg \uparrow$	1.0	U	1.0	U,J	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	U	1.0	U
Ethylbenzene	30	1.0	U	1.0	Ų	1.0	U,J	1.0	U	1.0	U	1.0	Ū	1.0	Ü	1.0	U	1.0	U
m- and p-Xylenes	59	2.0	Ũ	2.0	Ū	2.0	U,J	2.0	Ū	2.0	Ū	2.0	Ū	2.0	Ü	2.0	Ū	2.0	Ū
o-Xylene	59	2.0		1.0	Ŭ	1.0	U.J	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ũ	1.0	Ū	1.0	_ U
Toluene	100	1.0	Ü	1.0	Ū	1.0	U.J	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	 Ū	5.4	 -
Trichloroethene	3	1.0	ŭ	1.1		1.2	J	1.0	Ū.J	0.6	Ĵ	1.0	Ü	0.3	J	1.0	Ŭ	1.0	- ŭ -
Vinyl Chloride	0.2	1.0	Ü	1.0	U	2.5	- j	1.0	IJ	0.8	J	1.0	- u	1.0	Ü	1.0	<u>U</u> _	1.0	

TABLE A-21
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ15B

Sample Number:	Groundwater	PZ15B	PZ15		PZ15E		PZ15	БВ	PZ15		PZ15		PZ15	iΒ	PZ15		PZ1	15B
Sampling Date:	Cleanup Goal	11/20/02	05/29/0	03	11/18/0	3	05/20	/04	12/02/	04	06/08/	05	09/14/	/05	03/21/		09/1	9/06
Groundwater Elevation:	NA	592.25	592.4	1	589.63	3	593.5	55	592.8	5	592.9	95	592.3	34	594.1	9	594	.00
Well Bottom Elevation:1	NA NA	568.04	568.0	4	568,04	,	568.0	04	568.0	4	568.0)4	568.0	24	568.0		568	1.04
Portion of Glacial Unit:	NA	Middle	Middle	9	Middle	,	Midd	le	Middl	e	Midd	e	Midd	le	Midd	e	Mid	dle
pH (standard units)	NA .	8.09	7.96		8.17		8.76	5	8.08		10.8	3	7,78	3	9.29		7.5	57
Conductivity (mS/cm)	NA	0.591	0.665	,	0.569		0.61	5	0.70	7	0.54	3	0.58	8	0.51	1	0.3	89
Turbidity (NTU)	NA	1	-10		40		3.0		0		0		0		7		0	5
Inorganic Analytes		San Till and San San San	1.0	Sec.	**** 5.5.	in the	7. 8	Resi	ult (ug/L)	Tall and age	3.4	41435		r 15 1945	· · · · · · · · · · · · · · · · · · ·	10.11	*	5 % %
Aluminum	50	110	101		112	L	253		679		100	U	10,800		36.0	J	200	U
Antimony	3	4.0 U	4.0	υ	4.0	U	4	U	8	Ū	4.0	Ū	4	Ū	4.0	Ū	4	Ū
Arsenic	0.2	2.0 U	2.0	U	2.0	U	2.0	Ü	2.0	Ū	2.0	Ū	4.8		2.0	Ū	2.0	U
Barium	2,000	32.5	35.5		35.1		56.3		59.2		63.5	К	299		55.2		43.4	J
Beryllium	NA	2.8 U	NA		0.5	U	1.0	U	1.0	Ù	1.0	L,U	1.1		1.00	U	5.0	U
Cadmium	4	1.0 U	1.3	U	1.8	J,K	0.5	J	0.8	J	0.5	J,K	25.9		1.36	J	0.4	J
Calcium	NA	58,100	NA		53,900		74,700		68,100		74,000	ĸ	237,000		57,700		50,000	
Chromium	7,000	7.8	5.3	ī	6.5	ĸ	17.2		9.0		11.1		58.4		8.38		3.9	J,L
Cobalt	NA NA	4.2 U	NA		2.0	Ū	0.5	J,K	1.0	Ū	0.4	J	3.9		3.0C	U	50.0	Ū,*
Copper	NA	4.4 U	NA		1.8	J,L	10.1	K,*	3.1	J	1.9	J	35.1		4.32	J	2.0	J
Iron	NA NA	68.9	NA		64.6		148		469		21.0	K	13,000		27,2.	J	100	U
Lead	5	2.0 U	2.0	U	2.0	Ū	2.0	Ú	1.0		2.0	Ū	18.5		3.0	U	2.0	U
Magnesium	NA	13,800	NA		12,100		17,000		16,900		14,600		82,600		13,800		13,200	
Manganese	NA	8.6 U,*	NA		1.1		2.1	L,	10.6	L,*	1.0	Ų	515		0.840	J	15.0	U
Mercury	2	0.5 U	0.5	U,L	0.2	J	0.5	ÜJ	0.5	U	0.5	Ų,J	0.5	U,L	0.5	U	0.5	U
Nickel	57	5.1	3.0	L	3.0		7.9	J,K,*	7.6	К	8.2	K,*	31.3		3.76	J	3.0	J
Potassium	NA	2,960 J, K	NA		2,420	J,K*	5,200	K,	5,230	K	7,600	K	5,640		3,040		2,400	J
Selenium	NA	4.0 U	NA		4.0	U	4	U	4	U	1.0	J	4	J	1.3	J	4	U
Silver	0.1	1.7 U	2.0	U	4.0	U	_4.0	_U	4.0	U	4.0	_ U	4.0	U	5.00	ับ	10.0	U
Sodium	NA	23,100 K	NA		41,200	L	14,100		33,000	_ L_	19,300		32,400		21,500		31,100	
Thallium	0.5	2.0 U	2.0	Ū	2.0	Ū	2.0	C	1.0	U	1.0	_ U	3.0	U	2.0	U	1.0	U
Vanadium	NA	17.0 U	NA		20.0	U,L	_10.0	Ω	10.0	U	10.0	U	14.5		5.00	U	0.6	J
Zinc	NA	36.0 U	NA		30.0	Ü	30.0	C	21.5	J	10.3	J	73.3		10.8	J	22.0	J
Hexavalent Chromium	2.0	9.7	5.1	J,L	6.5	J	7.2		1.0	U,L	13.5	J,L,*	10.0	U,J,L	7.68	J,L	3.3	J,L
Cyanide	4	8 Ū	8	Ü	8	U,J	8	IJ	5	U	5	Ū,J	5	U	10	_ U_	3	J,K
Volatile Organic Compounds	Charles Burney	Profession .	1 14.	11 .1		Lj	Name of the second	Resu	ilt (µg/L))- ·	1.5	:						
1,1,1-Trichloroethane	117	1.0 UJ	1.0	U	1.0	U	1.0	Ū,J	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ú
1,1-Dichloroethane	700	1.0 U	1.0	U	1.0	c	1.0	Ū	1.0	U	1.0	_ U	1.0	U	1.0	_ U	1.0	Ú
1,2-Dichloroethane	0.4	1.0 U	1.0	U	1.0	υ	1.0	Ú	1.0	U	1.0	U	1.0	Ų	1.0	Ú	1.0	Ú
Benzene	1	1.0 UJ	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	υ	1.0	IJ
Chloroform	6	2.3 J	0.9	_1]	1.0	U,J	1.0	U	1.0	Ū	1.0	Ū	1.0	U	1.0	U	1.0	Ü
Ethylbenzene	30	1.0 U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ü	10	Ü	1.0	U
m- and p-Xylenes	59	2.0 U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	Ų	20	U	2.0	IJ
o-Xylene	59	1.0 U	1.0	U	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	U	10	Ú	1.0	Ü
Toluene	100	1.0 U	1.0	U	1.0	U	1.0	IJ	1.0	U	1.0	U	1.0	υ	1.0	U	1.0	IJ
Trichloroethene	3	1.0 U	1.0	U	1.0	U	1.0	U,J	1.0	Ū	1.0	U	1.0	U	1.0	U	1.0	IJ
Vinyl Chloride	0.2	1.0 U	1.0	U	1.0	Ų,J	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	Ū,J	1.0	Ü

TABLE A-22 GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ15C

كمراضيها والمائد الأمانات بالمراجع المساور	عدد المراجع المراجع					T				, <u>.</u>	مراجين		_		والمسيوي			-	4			
Sample Number:	Groundwater	PZ15		PZ150		PZ15		PZ1		PZ150		PZ15		PZ1		PZ15		PZ15C-D	PZ1			15C
Sampling Date:	Cleanup Goal	11/20/		05/29/0		11/18/		05/20		05/20		12/02/		06/0		09/14/		09/14/05	03/22			0/06
Groundwater Elevation:1	NA NA	592,2	_	592.1	2	593.2		593		593.	51	592.8		592		592.2		592.29	594.			.00
Well Bottom Elevation:1	NA NA	548.5	6	548.5	B	548.5	6	548	.56	548.	56	548.5	56	548	.56	548.5	56	548.56	548.	56	54	3.56
Portion of Glacial Unit::	NA	Lowe		Lowe		Lowe	r	Low		Lowe		Lowe		Lov		Lowe		Lower	Low		Lo	
pH (standard units)	NA	8.23		8.16		8.3		8.8		8.89		8.16		8.8		7.92		7.92	9.4		<u> </u>	79
Conductivity (mS/cm)	NA NA	0.716	6	0.681		0.668		0.6		0.67		0.67	3	0.6		0.64	6	0.646	0.47	'B	0.4	
Turbidity (NTL)	NA	0		-10		-10		3.		3.0		0				L0		0	0		<u></u> :	2
inorganic Analytes		100	**	March Sugar	ستخت	1 1		99 g 1377	10000		Result										.	
Aluminum	50	54.8		27.5		24.9	J,L	80.0	U	80.0	<u>u</u>	100	Ü	100	U	100	U	808	100	<u> </u>	200	
Antimony	3	4.0	U	4.0	<u> </u>	4.0	Ų	4	<u>U_</u>	4	Ū	4	U	4.0	U	4	<u> </u>	1 1	4.0	<u> </u>	4	<u> </u>
Arsenic	0.2	2.0	U	2.0	<u>U</u>	2.0	U	0.7		0.8		0.6	J,K	0.8	J	0.9		1.1 J	1.0		1.3	
Barium	2,000	75.2	- ,-	72.2		76.2		85.1		83.6		76.2	 -	94.8	K	76.3		86.9	64.9	- ;-	86.1	
Beryllium	NA NA	2.8	U	NA 13	U	0.5	Ū	1.0	U_U	1.0	<u>U</u>	1.0	U	2.0	U,L U	2.0	<u>U</u>	1.0 U		<u> </u>	5.0 5.0	<u> </u>
Calmium	NA NA	56.400		1.3 NA		1.1 59.400	K,J	1.0 61.000		1.0 60,600	υ	2.0 58.500	υ	63,200	- U -	55,800	U	77.800	43,300	U	56,700	
Calcium Chromium	7,000	3.8		3,5		3.4		12.8		13.7		6.7		5.7	- <u>K</u>	6.8		13.4	5.00	U	2.1	
Cobalt	7,000 NA	4.2		NA NA		2.0	-	0.3	J,K	0.4	J,K	1.0	Ū	1.0	- U	1.0	Ū	0.7	3.00	∵	50.0	- J,L
Copper	NA NA	4.4	- 5	NA NA		1.3	J,L	6.0	UL.*	6	UL,*	6.0	- 0	6.0	- ŭ	6.0	- ö -	4.4 J	2.08	_	25.0	
Iron	NA NA	14.2		NA NA		10.9		8.2	J.L	9.7	J.L	4.8	J,L	20.0	- 	20.0		970	50.0	 -	100	
Lead	(- '\sum_5'	2.0		2.0	Ū	2.0		2.0	- "	2.0	U	2.0	U	2.0	Ü	2.0	- -	0.9 J	3.0	- 	2.0	
Magnesium	T NA	16,200	- 3	NA NA		17,300		18,400	_ _	18,300		16,900	<u> </u>	16,600		16,600		25,500	13,500	<u>_</u> _	16,900	
Manganese	NA NA	7.9	- 1	NA		5.7		3.3	L.*	5.2		5.3	L.*	2.0	ĸ	6.9		101	11.1		3.7	
Mercury	2	0.5	Ü	0.5	U	0.5	U	0.5	<u>UJ</u>	0.5	ŪJ	0.5	- 	0.5	Ü,J	0.5	U,L	0.5 U.	0.5	Ū	0.5	- ŭ
Nickel	57	1.1	Ť	2.3	Ü	10.0	- <u>Ŭ</u>	2.6	J.K.*	3.2	J.K.	3.3	ĸ	4.7	K.*	1.5	<u></u>	5.2	3.00	- <u>U</u>	1.2	J,K
Potassium	NA NA	1.460	J. K	NA		1,520	J,K*	4,150	Κ.	2.920	K.	3,390	K	5.940	К	1.220		1,550 J	1.050		1.350	` j
Selenium	NA NA	4.0	Ü	NA		4.0	Ü	4	Ü	4	Ü	4	Ū	4.0	U	4	U	4 U	4.0	Ū	4	U
Silver	0.1	1.7	Ú	2.0	Ū	4.0	Ū	4.0	U	4.0	U	4.0	Ū	1.0	J,K	4.0	ū	4.0 U	5.00	U	10.0	Ü
Sodium	NA_	37,000	ĸ	NA		34,000	_ L	35,600		34,800		30,100	Ĺ	37,700		31,900		31,300	24,300		32,000	
Thallium	0.5	2.0	Ü	2.0	U	2.0	U	2.0	U	2.0	U	1.0	C	1.0	U	1.0	Ü	2.0 U	2.0	U	1.0	Ü
Vanadium	NA	17.0	U	NA		20.0	U,L	10.0	υ	10.0	U	10.0	0	10.0	Ü	10.0	Ü	2.0 J	5.00	U	1.2	J
Zinc	NA	36.0	Ū	NA		30.0	Ū	30.0	U	30.0	Ū	13.0	J	16.3	J	30.0	υ	19.8 J	30.0	U	25.7	J
Hexavalent Chromium	2.0	5.4	J	3.1	J,L	4.3	J,L	3.0		2.9	J,L	1.0	U,L	1.0	U,L,J,*	10.0	U,J,L	10.0 1,1		J,L	10.0	U,J,L
Cyanide	4	8	Ū	8	U	8	U,J	8	UJ	- 8	UJ	5	Ū	5	U,J	5	U	5 U		U	7	. К
Volatile Organic Compounds	STATE OF STATE OF		Lugar Mig.			Aug (Karana)		7. A. W.	Sec 1818			uot)	Sugar Sec	See 1 2 2 2	و کی افتح آخرو	· · · · ·					<u> </u>	
1,1,1-Trichlcroethane	117	1.0	U_	1.0	Ų	1.0	U	1.0	U,J	1.0	U,J	1.0	U	1.0	U_	1.0	<u>U</u>	1.0 U		U	1.0	U
1,1-Dichloroethane	700	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ú	1,0	<u> </u>	1.0	U	1.0 U		U	1.0	U
1,2-Dichloroethane	0.4	1.0	U	1.0	Ü	1.0	U	1.0	C	1.0	U	1.0	C	1.0	υ	1.0	U	1.0 U		<u>U</u>	1.0	U
Benzene	1 1	1.0	U	1.0	<u>u</u>	1.0	U	1.0	Ω.	1.0	U	1.0	Ų.	1.0	U	1.0	U	1.0 U	1.0	<u>U</u>	1.0	U
Chloroform	6	1.0	<u> </u>	1.0	U	1.0	U,J	1.0	U	1.0	U	1.0	<u>. Ų</u>	1.0	U	1.0	U	1.0 U		_ <u>U</u> _	1.0	
Ethylbenzene	30	1.0	<u> </u>	1.0	U	1.0	<u> </u>	1.0	_ <u></u>	1.0	Ü	1.0	U	1.0	U	1.0	<u>U</u>	1.0 U	1.0	<u> </u>	1.3	U
m- and p-Xyleries	59 59	1.0	U	2.0	Ü	2.0	<u> </u>	2.0	<u> </u>	2.0	Ü	2.0	<u> </u>	2.0	U.	2.0	_ <u>U</u> _	2.0 U	2.0	<u> </u>	2.0	<u>U_</u> _
o-Xylene Toluene	100		- 0 1	1.0	Ü	1.0	U	1.0	Ü	1.0	Ų	1.0	<u> </u>	1.0	U II	1.0	U_	1.0 U	1.0	U	1.0	U
Trichloroethene	3	1.0	- 8 1	1.0	<u></u>	1.0	<u> </u>	1.0		1.0	<u>. U</u>	1.0	-Ū	1.0	Ü	1.0	U		1.0		1.0	 ! -
Vinyl Chloride	0.2	1.0	- : 1	1.0	U U	1.0	UJ	1.0	U,J	1.0	U,J	1.0	-	1.0	- 0	1.0	U U	1,0 U	1.0	<u> </u>	1.0	U
vinyi Chloride	U.Z	1.0	· U	1.0		1.0_	U,J	1.0	U	1.U	U	7.0	1	1.0		' <i>1.</i> U	U	7.0 0	1 _ 1.0	U,J	L. 70_	υ∥

TABLE A-23
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ16

Sample Number:	Groundwater	PZ16	 7	PZ16		PZ16		PZ16		PZ16	2	PZ16		PZ16	-	PZ16		PZ	16
Sampling Date:		11/20/0		05/29/		11/18/0		05/20/0		12/01/		06/08/0		09/14/0		03/22/		09/2	
	Cleanup Goal		_		_		_												
Groundwater Elevation:	NA NA	592.01		592.1		592.66	_	592.3		593.1		592.56		591.8		594.1		592	
Well Bottom Elevation:1	NA	<u>587.53</u>	-	587.5		587.53		587.5		587.5		587.53		587.5	<u> </u>	587.5		587	
Portion of Glacial Unit:	NA NA	Upper		Uppe		Upper		Uppe	r	Uppe		Upper	·	Uppe		Uppe	<u> </u>	Upp	
pH (standard units)	NA	7.45		7.78		7.49		7.67		7.30		2.18		6.63		8.41		7.3	
Conductivity (mS/cm)	NA	1.09		0.94		1.49		1.30		1.63		2.33		1.52		2.960		1.4	
Turbidity (NTU)	NA	1		-10		-10		5.0		43		0_		113		0		2:	3
Inorganic Analytes			· 2		Experie				esult	(µg/L)	em jan					1 2			
Aluminum	50	199		4,520		191	L	1,090		1,440	*	100	_ U_	60.4	J	100	U	401	
Antimony	3	4.0	Ü	1.2	J	4.0	U	4	Ū	2	J	2.0	J	1	J	4.0	U	2.0	J
Arsenic	0.2	2.0	Ü	4.4		2.0	U	1.6	J	3.1		0.5	J	1.1	J	0.6	J	0.6	J,*
Barium	2,000	73.2		426		117		119		154		200	K	109		216		44.3	J
Beryllium	NA	2.8	U	NA		0.5	U	1.0	U	0.4	J,K,*	1.0	U,L	1.0	Ü	1.00	U	5.0	U,L
Cadmium	4	1.0	U]	24.6		1.9	J,K	4.9		12.2	J.*	2.0		2.0	U	2.00	U	9.9	
Calcium	NA	89,100		NA		94,700		72,600		103,000		146,000		84,500		148,000		96,000	
Chromium	7,000	4.2		49.2		6.5	K	30.3		20.5	L,	6.4		7.3		3.26	J	16.2	
Cobalt	NA	4.2	U	NA		2.0	C	1.2	K,J	1.8	J,K,*	0.5	J	1.0	U	3.00	U	0.3	J,K*
Copper	NA	3.9	J	NA		4.7		21	K,*	32.2	J,*	6.0	U	2.0	J	3.49	J	15.3	J
Iron	NA	805		NA		760		3,050		6,310	K,*	1,060	K	412		1,070		1,310	_
Lead	5	2.3		43.1		2.9		13.3		20.7		0.8	J	2.0	U	3.0	U	9.9	*
Magnesium	NA	9,790		NΑ		13,200		9,490		15,100		20,700		12,100		23,000		18,100	
Manganese	NA	172		NA		230		206	•	316	•	334	K	182	K	355		90.6	
Mercury	2	0.5	U	0.5	U,L	0.5	U	0.5	UJ	0.5	U	0.5	U,J	0.5	U,I_	0.5	U	0.5	U,J
Nickel	57	3.7		17.7		10.0	U	10.8	K,*	9.6	J,K	5.1	K,*	2.2		3.00	U	13.1	J
Potassium	NA	9,960	J, K	NA.		11,000	K,*	8,710	K,*	8,130	K	11,000	K	6,360		7,740		7,400	
Selenium	NA	4.0	U	NA		4.0	U	8	U	4	c	4.0	U	4	Ĺ	4.0	U	4	U
Silver	0.1	1.7	U	0.7	Ĵ	4.0	U	4.0	Ü	1.6	J,K	4.0	Ú	4.0	Ū	5.00	Ų	10.0	U
Sodium	NA	139,000	K	NA		199,000	L	460,000		190,000		259,000		201,000		390,000		102 000	
Thallium	0.5	2.0	U	2.0	U]	2.0	Ū	2.0	U	1.0	Ü	1.0	U	0.3	J	2.0	U	1.0	U
Vanadium	NA	17.0	U	NA	$\neg \neg$	13.3	J	7.7	J	6.1	J	10.0	Ü	3.2		5.00	Ų	1.7	K,J
Zinc	NA	12.4	J	NA		30.0	U	25.0	J,K	34.7		16.6	J	30.0	U	8.40	J	50.6	J
Hexavalent Chromium	2.0	10	U,L	10.0	UJ,L	10.0	Ū	2.5	J,L	1.0	U,L	1.0	J.J.L.	10.0	Ū	10.0	Ū	10.0	U,J,L
Cyanide	4	8	J	29		8	U,J	4	J	5	Ü	5	U.J	5	Ü	10	Ü	-6	J,*
Volatile Organic Compounds	*******	and the second		10 12 10	, «° .	THE BOY W		R	esult	(ug/L)	g			23 A	. 18				. : .
1,1,1-Trichloroethane	117	1.0	υl	1.0	Ū	1.0	U	1.0	U,J	1.0	U	1.0	Ų	1.0	Ü	1.0	Ü	1.0	Ū
1,1-Dichloroethane	700	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ū	1.0	IJ	1.0	Ū	1.0	Ū
1,2-Dichloroethane	0.4	1.0	U	1.0	Ū	1.0	U	1,0	U	1.0	U	1.0	Ü	1.0	T)	1.0	Û	1.0	Ū
Benzene	1	1.0	Ū	1.0	Ū	1.0	U	1.0	Ū	1.0	ū	1.0	Ū	1.0	— <u>;</u> —	1.0	Ū	1.0	Ü
Chloroform	6	1.0	Ū	1.0	- ù l	1.0	U.J	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ü	1.0	Ū
Ethylbenzene	30	1.0	Ü	1.0	Ű	1.0	Ü	1.0	- U	1.0	- i 	1.0	ŭ	1.0	- U	1.0	- ŭ	1.0	Ü
m- and p-Xylenes	59	2.0	ü	2.0	-ŭ 1	2.0	ŭ	2.0	Ü	2.0		2.0	ŭ	2.0	-ŭ -	2.0	- -	2.0	Ü
o-Xylene	59	1.0	-ŭ1	1.0	-ŭ 1	1.0	Ü	1.0	Ü	1.0	-ŭ 1	1.0	- ŭ 1	1.0	— <u>`</u>	1.0	- Ŭ	1.0	-
Toluene	100	1.0	- +	1.0		1.0	ŭ	1.0	Ü	1.0	ü	1.0	- 6	1.0		1.0	- ü	1-0-	- ŭ
Trichloroethene	3	2.2	-~	0.87	-51	0.96	-5 1	1.0	- j	0.9	- 5	1.1	 -	3.0	=_	0.5	- j	1.0	Ü
Vinyl Chloride	0.2	1.7		0.77	<u> </u>	3.9	- j 1	1.9		5.1		1.5		1.8		2.2	- j	2.4	_

TABLE A-24
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR PZ17

رحا المستحدات المناب المستجد المستحد ا										-								·	===
Sample Number:	Groundwater	PZ17		PZ17		PZ17		PZ17		PZ17		PZ1		PZ17		PZ17		PZ1	
Sampling Date:	Cleanup Goal	11/20/0		05/29/	_	11/18/0	_	05/20/		12/02/		06/08		09/14/0		03/22/0		09/:21	
Groundwater Elevation:	NA NA	592.89		593.1	_	593.90		594.0		593.0		593.		592.90		594.1		594.	
Well Bottom Elevation:	NA	589.22	2	589.2		589.22	:	589.2	2	589.2	2	589.	22	589.2	2	589.2		589.	2:2
Portion of Glacial Unit:	NA	Upper		Uppe	<u> </u>	Upper		Uppe	r	Uppe	r	Upp		Upper	r	Uppe	r	Upp	
pH (standard units)	NA	7.43		7.30		7.30		8.05		6.89		5.5	2	6.80		8.01		6.9	0
Conductivity (mS/cm)	NA	0.98		1.28		1.24		2.82		1.38		1.4	5	1.20		1.180)	0.89	
Turbidity (NTU)	NA	17		-10		-10		64.0		127		0		0		1		19	
inorganic Analytes		2300	3494		3				Resul	t (µg/L)		180	`	9.7					
Aluminum	50	747		345		22.1	J,L	33.5	J	1,130	Ĵ	3.5	К	100	U	100	U	425	
Antimony	3	4.0	U	4.0	υ	4.0	C	4	U	4	U	142,000	K	4	U	4.0	Ū	3	J
Arsenic	0.2	2.0	U	2.0	U	2.0	C	2.0	U	0.9	J,K	9.9		2.0	Ū	2.0	U	1.5	J
Barium	2,000	37.3		42.0		43.3		40.3		49.9		0.4		42.1		45.2		89.9	
Beryllium	NA	2.8	U	NA		0.5	C	1.0	U	1.0	U	6.0	U	1.0	U	1.00	Ū	5.0	Ü
Cadmium	4	1.6		15.4		2.0	J.K	1.0	Ū	3.5		289	ĸ	0.5	J,K	2.00	U	3.1	
Calcium	NA NA	101.000		NA		131,000		122,000		138.000		1.7	J	106,000		110,000		65,400	
Chromium	7,000	67.1	_	8.7		4.0	J	16.2		28.2		24,500		11.7		4.16	J	9.3	J,L
Cobalt	NA	4.2	U	NA		2.0	Ū	0.6	J,K	0.6	J.K	146	К	0.5	j	3.00	U	0.3	*ران
Copper	NA	144		NA		1.4	J.L	6.0	U.*	34.5		0.5	Ü,J	6.0	Ū	2.54	J	11.9	
Iron	NA	877		NA	_	211		894		2,410		12.5	K.*	130	ĸ	592		1,810	
Lead	5	5.1		7.0		0.8	J	2.0	Ü	14.1		11,300	K	2.0	Ū	3.0	U	7.1	K
Magnesium	NA NA	18,000		NA		24,400	<u> </u>	24,600		25,900		4	- ;; -	20,100		2:1,800		8.830	
Manganese	NA	79.5		NA		141		120	*	142		4.0	- Ū	102		175		141	
Mercury	2	0.5	U	0.5	Ü,L	0.5	Ū	0.5	UJ	0.5	U	123,000		0.5	Ū.L	0.5	U.L	0.5	U
Nickel	57	39.5		15.5	,-	8.9	Ĵ	8.7	J,K,*	42.0		1.0	Ū	8.1		4.62	K	4.9	J,K
Potassium	NA	6,470	J, K	NA		7,170	K,*	8,540	K,*	8,980	K	10.0	Ū	7,250		5,710		5,490	
Selenium	NA	4.0	U	NA		4.0	Ü	4	Ü	4	Ü	14.9	_ _ _ _	4	Ü	4.0	Ü	4	U
Silver	0.1	1.7	Ū	2.0	U	1.1	Ĵ	4.0	Ü	4.0	Ū	1.0	U.J.L.	4.0	Ū	5.00	U	10.0	U
Sodium	NA	92,800	K	NA		99,500	Ĺ	90.100		103,000	Ĺ	5	U.J	107,000		99,200		183,000	
Thallium	0.5	2.0	Ü	2.0	U	2.0	Ū	2.0	Ū	2.0	U	1.0	Ü	2.0	Ú	2.0	Ü	1.0	U
Vanadium	NA	17.0	Ū	NA		8.2	J	10.0	Ū	3.8	J	10.0	_ _	10.0	Ū	5.00	Ū	6.7	J
Zinc	NA NA	19.2	Ĵ	NA.		30.0	Ť	30.0	Ū	60.7		14.9		30.0	ũ	7.47	Ĵ	41.8	<u>;</u>
Hexavalent Chromium	2,0	10	Ü	10.0	UJ.L	10.0	Ū	10.0	UĴ.L	1.0	U.L	1.0	U.J.L.*	10.4	J,L	10.0	Ū	10.0	U,J,L
Cvanide	4	8	Ü	7	J	8	U.J	3	J	5	U	5	U.J	5	Ú	10	Ū	11	K
Volatile Organic Compounds	TO NAME OF STREET	Swine .	. 3	Marine - Silver		Market Affile	ET 13:0		Resul	t (ug/L)	S 2000	Part of the		7.3 83	1. 11				
1,1,1-Trichloroethane	117	1.0	υÌ	1.0	Ū	1.0	ŪΙ	1.0	U.J	1.0	Ù	1.0	U	1.0	Ù	1.0	U	1.0	U
1,1-Dichloroethane	700	1.0	Ŭ	1.0	Ü	1.0	Ü	1.0	U	1.0	Ŭ	1.0	- ŭ	1.0	ŭ	2.0	ŭ	1.0	- -
1.2-Dichloroethane	0.4	1.0	Ť	1.0	-01	1.0	Ŭ	1.0	Ü	1.0	-ŭ	1.0	Ū	1.0	Ū	1.0	Ū	1.0	_ _
Benzene	1	1.0	Ŭ	1.0	Ť	1.0	Ü	0.50	-j	0.5	_ j	1.0	Ū	1.0	Ũ	0.3	J	1.0	Ū
Chloroform	6	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ū	1.0	-ŭ	1.0	Ü	1.0	Ť	1.0	Ü	1.0	
Ethylbenzene	30	1.0	Ü	1.0	Ŭ	1.0	Ü	1.0	Ü	1.0	Ü	1.0	- -	1.0	ŭ	1.0	Ŭ	1.0	
m- and p-Xylenes	59	2.0	ŭ l	2.0	- ŭ l	2.0	Ü	2.0	Ü	2.0	- U -	2.0	_ U	2.0	Ŭ	1.0	Ū	2.0	- U
o-Xylene	59	2.0	<u> </u>	1.0	- ŭ l	1.0	ŭ	1.0	- U	1.0	- U	1.0	- ប	1.0	ŭ	1.0	Ü	1.0	
Toluene	100	1.0	- U	1.0	- ŭ	1.0	Ü	1.0	Ü	1.0	-	1.0		1.0	ŭ	0.5	J	1.0	
Trichloroethene	3	1.4	┵┤	1.0	- 51	1.0	 	0.63	J	1.0	- U	1.0	- u -	0.5	- j	1.0	Ü	1.0	
Vinyl Chlor de	0.2	0.7		1.0		5.1		3.3	<u> </u>	6.6		3.3		2.3	<u> </u>	5.3	J	1.4	·———

TABLE A-25
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR EW1

(G	I Committee	. F1444	_	E VAL	_	F14/4		5141		514		514		EV		C-1444	_	EW		EW	
Sample Number:	Groundwater	EW1	-	EW.		EW1		EW1		EW		EW		09/1:		EW1-	_	03/22		09/20	
Sampling Date:	Cleanup Goal	11/21/0	02	05/28/	03	1,0100	15	05/20/	U4	11/30	/U4	06/07	/05			09/12/	UO		UБ		.,
Groundwater Elevation:	NA NA																_				
Well Bottom Elevation:	NA NA	539.1	0	539.1	_	539.10	0	539.1		539.		539.		539		539.1		539.1		539	
Portion of Glacial Unit:	NA NA	NA ²		NA ²		NA ²		NA ²		NA		NA NA		N/		NA ²		NA.		N/	
pH (standard units)	NA	<u> </u>						6.09		7.0		7.3		9.5		9.54		8.90		6.7	
Conductivity (mS/cm)	NA	-						0.790		0.84	0	0.75	54	0.7		0.77	3	0.78	1	0.69	
Turbidity (NTU)	NA			1, 27,52				0.0		0		0		C)	0		0		0	
Inorganic Analytes						Marcon Co.		·· · · · ·				L)*****Cos				·				\$1.50	
Aluminum	50	45.7		12.3	<u>.</u>	40.0	U,L	80.0	U	100	U	100	U	100	U	100	U	100	<u> </u>	200	U
Antimony	3	4.0	U	4.0	U	4.0	U	4	U	4	<u>U</u>	4.0	U	4	<u> </u>	4	U	4.0	U	4	U
Arsenic	0.2	2.0	U	2.0	U	0.6	J	0.7	J	0.5	J	0.5	J	0.5	J	2.0	U	0.6	J	2.0	U I
Barium	2,000	69.1		70.8		72.6		68.8		67.8		78.1	K	68.4		66.3		67.9		74.2	J
Beryllium	NA NA	2.8	Ų	NA_	—–	0.2	J,K	1.0	U	1.0	Ų	1.0	U,L	1.0	U	1.0	U	1.00	U	5.0	U
Cadmium	4	176		124		135		124		123		92.7		80.2		81.6		95.9		107	
Calcium	NA	65,200		NA		70,400		65,700		68,100		70,500		67,300		66,900		€5,900		69,600	
Chromium	7,000	11.2		10.4		12.9		18.8		16.4		16.2		16.2		16.9		14.2		15.0	
Cobalt	NA NA	4.2	U	NA		2.0	U	0.4	J,K	0.5	J,K	0.4	J	1.0	U	0.4	J_	3.00	U	50.0	U,*
Copper	NA NA	3.4	J	NA		4.7	<u>L</u> _	9.2	Κ,*	2.8	J	2.0	J	6.0	U	6.0	U	2.44	J	1.7	
Iron	NA NA	55.0		NA		130		30.9		54.7		60.4	К,*	20.0	U	20.0	Ü	50.0	U	100	U
Lead	5	0.6		2.0	U	2.0	U	2.0	Ų	2.0	U	2.0	U	2.0	Ü	2.0	U	3.0	Ü	1.5	J,
Magnesium	NA	15,300		NA		16,900		16,100		16,300		15,700		16,300		15,800		6,400		17,000	
Manganese	NA .	34.3		NA		10.2		9.4		10.4		11.2	K	8.4		8.4		8.52	<u> </u>	8.3	
Mercury	2	0.5	C	0.5	U,L	0.5	Ų	0.5	U	0.5	U	0.5	U	0.5	U,L	0.5	U,L	0.5 7.5	Ū.	0.5	U
Nickel	57	10.9		7.7		6.9	J	11.6	Κ,	10.4	<u> </u>	11.1	K	7.4		7.9		2,300	K	7.8	<u>J</u>
Potassium Selenium	NA NA	3,100	J, K	NA NA		3,160	J,K* U	3,530 4	K,*	4,110	K U	5,970 4.0	K U	2,460	U	2,370	Ü	4.0	IJ	2,630	J U
Silver	0.1	1.7	- U	2.0		4.0			U.	4.0	U U	4.0	U U	4.0	U	4.0	- U -	5.00	- U	10.0	
Sodium	NA U.1	71,200	U K	NA NA		4.0 58,500	U	4.0 55.100	U	56,400		65,600	U	58,600		58,000	<u>u</u>	60.600		66,600	
Thallium	0.5	2.0	÷	2.0	U	2.0	- 	2.0	U	0.5	— <u></u>	1.0	U	1.0	U	1.0	U	2.0	U	1.0	
Vanadium	NA NA	17.0	-	NA NA		20.0	U,L	10.0	ü	10.0	Ü	10.0	Ü	10.0	u	10.0	- 0	5.00	- U	0.7	- JK
Zinc	NA NA	34.6	- J	NA.	-	16.5	J.L	19.6	J,K	40.9		31.9		18.0	J,K	20.5	J.K	19.3	J	47.1	-31
Hexavalent Chromium	2.0	13		4.4	J.L	11.1	٠,٢	8.5	J.L	10.8	L	20.8	J.L	5.7	J.L	6.5	J.L	12.8		13.8	 -
Cvanide	4	7	_ <u>-</u> _	4	J.	8	J	8	J	4	J	8		5	, <u>, , , , , , , , , , , , , , , , , , </u>	6	- U,L	13	•	3	
Volatile Organic Compounds	177 - 338	198389-74 TA						30.00	12.23				qe, Y	248 6 6 6				<u></u>	358	7 75°	<u>`</u>
1.1.1-Trichlcroethane	117	1.0	UJ	1.0	U	1.0	Ū		U.J	1.0	U	1.0	U	1.0	U	1.0	U	1.0	IJ	1.0	U
1.1-Dichloroethane	700	1.0	Ü	1.0	Ű	1,0	Ū	1.0	Ü	1.0	Ü	1.0	Ü	1.0	- ŭ	1.0	Ü	1.0	Ü	1.0	j-
1.2-Dichloroethane	0.4	1.0	Ū	1.0	Ü	1.0	Ü	1.0	- ŭ	1.0	Ü	1.0	Ü	1.0	U	1.0	ŭ	1.0	Ü	1.0	·······································
Benzene	1 1	1.0	ÜJ	1.0	— <u>∪</u>	1.0	Ū	1.0	Ü	1.0	Ü	1.0	u	1.0	Ü	1.0	- ŭ	1.0	Ü	1.0	 -
Chloroform	6	1.0	<u> </u>	1.0	- Ū	1.0	Ū.J	1.0	Ü	1.0	U	1.0	u	1.0	- U	1.0	- ŭ	1.0	- ŭ	1.0	_
Ethylbenzene	30	1.0	- 0	1.0		1.0	LJ	1.0	ŭ	1.0	Ü	1.0	- ŭ	1.0	Ü	1.0	-	1.0	- ū	1.0	- U
m- and p-Xylenes	59	2.0	Ü	2.0	- Ŭ	2.0	Ü	2.0	- Ü	2.0	ŭ	2.0	Ü	2.0	Ü	2.0	Ü	2.0	-ŭ	2.0	- <u>U</u>
o-Xylene	59	1.0	UJ	1.0	- Ŭ	1.0	Ü	1.0	- U	1.0	Ŭ	1.0	Ü	1.0	- U	1.0	Ü	1.0	u	1.0	 <u></u>
Toluene	100	1.0	U	1.0		1.0	Ŭ	1.0	- ŭ	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ŭ	1.0	- Ū	1.0	 j
Trichloroethene	3	1.0	ÜĴ	1.0	 -	1.0	Ü	1.0	U.J	1.0	Ü	1.0	Ü	1.0	U	1.0	Ū	1.0	- Ū	1.0	- Ū
Vinyl Chloride	0.2	1.0	UJ	1.0		1.0	Ū.J		U	1.0	Ü	1.0	- Ū	1.0	- ŭ	1.0	Ü	1.0	U.J	1.0	U,J

TABLE A-26
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR EW2

Sample Number:	Groundwater	EW2		EW2		EW2		EW:		EW2		EW		EW:		EW		EW	
Sampling Date:	Cleanup Goal	11/21/	02	05/28/	03	11/18/0)3	05/20/	04	11/30/	04	06/07/	05	09/12/	05	03/22	06	09/20	J/06
Groundwater Elevation:	NA.	_		_												-			
Well Bottom Elevation:	NA	539.5	0	539.5	0	539.50	,	539.5	i0	539.5	0	539.5	50	539.5	i0	539.5	50	539	.5()
Portion of Glacial Unit:	NA NA	NA ²		NA ²		NA ²		NA ²		NA ²		NA ²		NA ²		NA ⁴	!	N/A	$\frac{1}{3}$
pH (standard units)	NA							7.82		7.52		6.87	,	6.67		8.64		7.1	16
Conductivity (mS/cm)	NA							0.74	7	0.773	3	0.68	6	0.72	2	0.79	8	0.6	03
Turbidity (NTU)	NA							1.0		0		0		0		0		0	
Inorganic Analytes	. 475 P. W. C.			10,897	A	HANNE.	, (**	38.65	Result	(µg/L)	,								
Aluminum	50	66.5		8.8	J	17.6	J,L	80.0	Ū	100	U	100	Ū	100	U	100	Ū	200	U
Antimony	3	4.0	Ų	4.0	U	4.0	U	4	U	4	Ų	4.0	U	4	U	4.0	Ų	4	U
Arsenic	0.2	2.0	U	2.0	U	2.0	U	0.8	J	2.0	U	2.0	U	2.0	U	0.5	J	0.6	J,*
Barium	2,000	48.9		49.4		47.1		49.4		52.8		65.3	K	59.0		65.0		68.2	J
Beryllium	NA NA	2.8	U	NA		0.1	J,K	1.0	Ū	1.0	U	1.0	Ü,L	1.0	U	1 00	Ü	5.0	Ú
Cadmium	4	302		311		319		392		298		228		202		187		141	
Calcium	NA	66,000		NA		65,500		61,800		63,400		66,600		63,900		66 200		62.100	
Chromium	7,000	19.8		16.2		19.6		36.7		25.0		24.5		25.7		16.9		17.8	
Cobait	NA _	4.2	Ü	NA		2.0	U	1.0	J,K	1.0	Ü	1.0	U	0.4	J	3 00	Ü	0.20	J,*
Copper	NA	3.7	J	NA		1.8	J,L	10.8	K,*	6.0	U	6.0	Ū	6.0	U	1 62	J	1.3	J
Iron	NA	62.5		NA		11.0	J	764		18.1	J	21.9	K,*	20.0	U	17.3	Ĵ	100	U
Lead	5	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	Ū	0.7	J	3.0	Ū	2.0	U *
Magnesium	NA	14,500		NA		15,300		14,500		15,200		15,000		16,000		16,600		15,900	
Manganese	NA NA	320	•	NA		126		279		52.8	•	44.0	K	39.9		28.2		40.3	
Mercury	2	0.5	U	0.5	U,L	0.5	U	0.5	<u> </u>	0.5	U	0.5	U	0.5	U,L	0.5	U	0.5	<u> </u>
Nickel	57	19.8		14.4		14.8		20.3		16.0	•	15.4	<u>K</u>	12.0		9.52	K	8.1	J
Potassium	. NA	3,840	J, K	NA		4,120	Κ,*	4,870	Κ,*	5,190	K	6,330	к	3,070		3,050		2,930	
Selenium	NA	4.0	U	NA		4.0	U	4	<u> </u>	4	U	4.0	U	4	U	41.0	U	4	U
Silver	0.1	1.7	U	2.0	<u> </u>	4.0	U	4.0	U_	4.0	U	4.0	U_	4.0	U	5.00	U	10.0	u
Sodium	NA NA	69,400	K	NA NA	—	56,800	L	52,900		52,100	<u> </u>	54,300		48,900		59,700		54,400	
Thallium	0.5	2.0	U	2.0	U	2.0	Ü	2.0	U	0.4	J	1.0	U	1.0	U	2.0	U	1.0	U
Vanadium	NA .	17.0	U	NA.		10.0	J	10.0	U	10.0	U	10.0	U	10.0	Ü	5.00	U	0.8	J,K
Zinc	NA NA	76.5		NA		65.3		362		84.5		59.1		53.3	K	52.9	K	56.6	
Hexavalent Chromium	2.0	20 28	<u>-</u>	10.9	J,L	19.2		15.5	J,L	16.8 19	<u> </u>	15.2 27	J,L	17.2	J,L	18.0		14.5	J,*
Cyanide	4		J	9		16	J	17			.:			18		22		23	
Volatile Organic Compounds						4.0	11			(ug/L)	11			1 10	·	1		T 40	U
1,1,1-Trichloroethane	117	1.0	U I	1.0	<u>U</u>	1.0	Ų	1.0	U,J	1.0	<u></u>	1.0	<u> </u>	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	700 0.4	1.0	U	1.0	U	1.0 1.0	U	1.0	U	1.0 1.0	U	1.0	U U	1.0	U	1.0	U	1.0	
1,2-Dichloro ethane	1 0.4	1.0	U			1.0	Ü												
Benzene	6	1.0		1.0	Ų.	1.0		1.0	U	1.0	U	1.0	_ <u>U</u> _	1.0	Ų.	0.5	<u> </u>	1.0 0.59	
Chloroform	30	1.0	U	1.0	U	1.0	CC	1.0	Ü.J	1.0	Ü	1.0	U	1.0	U		<u> </u>		J
Ethylbenzene	59	2.0	- 0	2.0	_ U	2.0	U	2.0	U,J	2.0	U	2.0	U	2.0	-	10	U	2.0	<u>U</u>
m- and p-Xylenes	59	1.0	U		. <u>. U</u>	1.0	Ü	1.0	_ <u>U</u>	1.0	U					10			<u>U</u>
o-Xylene	100	1.0	Ü	1.0		1.0				1.0		1.0	<u>U</u>	1.0	U		_ <u>U</u>	1.0	- U
Toluene				1.0	U		U	1.0	<u>U</u>		U	1.0	U	1.0	U	1.0	U	1.0	
Trichloroethene	3	1.0	U	1.0	_	1.0	U	1.0	U,J	1.0		1.0	<u>U</u>	1.0	<u></u>	1.0	U	1.0	U
Vinyl Chloricle	0.2	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	10	Ú,J	1.0	Ū,J

TABLE A-27 GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR EW3

Sample Number:	Groundwater	EW3	EW3	EW3	EW3-D	EW3	EW3	EW3-D	EW3	EW3-D	EW3	EW3	EW3-0	EW3	EVV3-D
Sampling Date:	Cleanup Goal	11/21/02	05/28/03	11/18/03	11/18/03	05/20/04	11/30/04	11/30/04	06/07/05	06/07/05	09/12/05	03/22/06	03/22/06	09/20/06	09/20/GB
Groundwater Elevation:	NA NA		-	11/10/05	11/10/05	UUI ZUI U	11/30/04	11/30/04		- 0007703	- 03/1203		032200	03/20/00	08/20/00
Well Bottom Elevation:	T NA	536.60	536.60	536.60	538.60	536.60	536.60	536.60	536.60	538,60	536.60	538.60	5;16,60	536,60	528.60
Portion of Glacial Unit:	NA NA	NA ²	NA ²	NA ²	NA ²	NA ²	NA ²	NA ²	NA ²	NA ²	NA ²	NA ²	NA ²	NA ³	PA ⁴
pH (standard units)	NA NA	'''		- '0'		7.23	7.61	7.61	7.17	7.17	6.20	8.83	0.83	7.29	7 29
Conductivity (mS/cm)	NA NA					0.728	0.778	0.778	0.727	0.727	0.790	0.761	0.761	0.569	0 569
Turbidity (NTU)	NA NA					0.0	0	0	0	0	0	0	0	0	2
Inorganic Analytes	11 11 1 18507	\$388 B 50	2.287.4	J. C. W. 20 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	79.79.54	11.860	11 39/19	Result (ug/L)	1 j.; 20	K(1)	41.			7.5. v	974
Aluminum	50	58.3	NS	10.7 J,L	40.0 U,L	80.0 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	200 U	200 U
Antimony	3	40 U	NS	4.0 U	40 U	4 U	4 Ü	8 U	4 U	4.0 U	1 J	4.0 U	4.0 U	4 U	4 U
Arsenic	0.2	1.7 J	NS	2.0 U	2.0 U	2.0 U	0.5 J	0.9 J	2.0 U	2.0 U	2 (iU	1.3 j	0.8 J	0.9 J,*	1.3 J,*
Banum	2,000	63.9	NS	53.4	51.6	54.2	58.9	55.9	67.0 K	68.0 K	59 2	68.1	65.1	67.1 J	69.5 J
Beryllium	NA NA	2.8 U	NS	0.1 J,K	0.1 J,K	1.0 U	10 U	1.0 U	1.0 U.L	10 U,L	1.0 U	1.00 U		5.0 U	5.0 U
Cadmium	4	516	NS	355	339	298	275	271	294	292	26B	271	227	132	149
Calcium	NA NA	68,200	NS	64,600	65,100	59,500	64,000	63,100	69,300	69,200	66,300	61,100	61,100	59,800	59,900
Chromium	7,000	58.0	NS	13.7	8.4 K	16.7	10.6	11.3	18.3	17.4	15.7	26.6	13.6	12.9	27.3
Cobait	ŅA	4.2 U	NS	0.7 J,K	2.0 U	0.7 J,K	0.5 J,K	0.4 J,K	0.5 J	0.6 J	0.4 J	3.00 U	3.00 U	0.3 J.K	0.4 I,K
Copper	NA NA	16.2	NS	46 L	1,7 J,L	6 U.*	2.1 J	6.0 U	60 U	6.0 U		5.50	2.76 J	2.1 J	4.7 J
Iron	NA NA	3,850	NS	450	124	68.5	121	129	79 K.*	89 4 K		649	64.8	296	909
Lead	5	20 U	NS	2.0 U	2.0 U	2.0 U	2.0 U	20 U	3.1	2.0 U	2.0 U	3.3	30 U	1.8 J,	2.0 U.*
Magnesium	NA NA	15,800	NS	15,300	15,100	15,600	15,700	15,100	16,100	16,400	15,700	16,200	15,9(0	15,600	15,500
Manganese	NA 2	109	NS	94,1	94.6	80.8	76.9	743	692 K	68.9 K	81 i) K	65.9	66.6	37.1 J	37 1
Mercury Nickel		0.5 U	NS NS	0.5 U 38.4	0.5 U 37 5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0 E U,L	23.0 K	0.5 U 22.2 K	0.5 U	0.5 U
Potassium	57 NA	4,000 J. K	NS NS	4,120 K.*	4,100 K.*	36.9 4.900 K.*		32.3 4.520 K	34.4 K 6.770 K	7.010 K	30.4 K	23.0 K 3,400	3,34)	3.190 J	15.5 J 3,240 J
Selenium	NA NA	4,000 J, K	NS NS	4,120 K,	4.00 K,	4,900 K.	5,050 K	4.520 K	4 U	4.0 U		3,400 4.0 U		4 U	3,240 J
Silver	0.1	17 U	NS	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	5.00 U		10.0 U	10.0 U
Sodium	NA NA	66.500 K	NS NS	60.000 L	60 300 L	54 600	51.300 L	50.500 L	57.100	56.900	58 800	58,300	58,400	48.000	48.500
Thallium	0.5	20 U	NS NS	2 D U	2.0 U	2.0 U	0.3	10 U	0.5 J	10 U	1.0 U	20 U	2.0 U	1.0 11	1.0
Vanadium	NA NA	170 U	NS NS	6.6 J	20.0 U.L	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10 0 U	5.00 U	5.00 U	0.9 J.K	1.5 J.K
Zinc	T NA	460	NS	206	185	186	181	176	165	161	172.0	171	113	95.3	124
Hexavalent Chromium	2.0	10 U	NS	2.9 J	2.9 J	4.2 J.L	4.2 L	1.0 U.L		3.9 J.L		5.25	6.20	10 0 U.J.L.	10.0 U.J.L.*
Cvanide	 	363 J	NS	9 1	7 J	7 J	8	6	14	13	11	27	20	22	37 J.*
Volatile Organic Compounds			7 7 7	.28. 7	(A)	I-X.	1 . 421, 21	Result (ug/L)	3.7				·		
1.1.1-Trichloroethane	117	1.0 U	NS	10 U	1.0 U	1.0 U.J	1.0 U	10 U	1 1.0 U	10 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	700	1.0 U	NS	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	10 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U
1,2-Dichloroethane	0.4	10 Ü	NS	10 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U
Benzene	1	1.0 U	NS	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	10 U	1.0 U	1.0 U	10 U	10 U	1.0 U
Chloroform	6	1.0 U	NS	10 U,J	1.0 U,J	1.0 U	1.0 Ü	1.0 Ü	10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylpenzene	30	46	NS	1.0 U	10 U	0.32 J	1.3	1.3	0.7 J	0.7 J	1.8	1.3	1.3	0.83 J	0.85 J
m- and p-Xylenes	59	2.0 U	NS	2.0 U	2.0 Ú	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.B J		2.0 U	2.0 U
o-Xylene	59	1.0 U	NS	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	03 J	03 J	10 U	1.0 U
Toluene	.00	1.0 U	NS	1.0 U	1.0U	10 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U	1.0 U		1.0 U	1.0 U
Trichloroethene	3	1,1	NS	1.0 U	10 U	1.1	0.5 J	0.5 J	0.5 J	0.5 J	0.6 J	0.4 J	0.4 3	1.0 U	10 U
Vinyl Chloride	0.2	1.0 U	NS	1.0 U.J	1.0 U,J	1.0 U	1.0 U	10 U	_1.0 U	1.0 Ú	1,0 U	10 J	1,0 U,J	1.0 U,J	10 U,J

TABLE A-28
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR EW4

Sample Number:	Groundwater	l EW4	EW4-D	EW4		W4-D	EW-		EW-	4	EW4		EV	//	EW4	I EW	A	. E	W4
Sampling Date:	Cleanup Goal	11/21/02	11/21/02	05/28/03		728/03	11/18/		05/20/		11/30/		06/0		09/12/05	03/22			20/06
Groundwater Elevation:	NA NA	11/21/02	11/21/02	03/26/03		720103	11/10/	03	U3/20/	104	11/30/	-	00/01	703	09/12/03	03/22	700	1 05/2	.000
	NA NA		500.50	533.50			533.5		533.5		533.5		533		533.50	533.5			3.50
Well Bottom Elevation:		533.50	533.50			33.50				_			533 NA		NA ²		_		
Portion of Glac al Un t:	NA NA	NA ²	NA ²	NA ²	+-	NA ²	NA ²		NA ²		NA ²					NA.		N/	
pH (standard un ts)	NA.		 	 					7.56		7.67		7.0		7.47	8.66		7.3	
Conductivity (mS/cm)	NA NA		 	 					0.74		0.779	9	0.7		0.726	0.84	<u>,4</u>		618
Turbidity (NTU)	D	-							0.0	/31.5	<u> </u>		0		L0	0		ــــــــــــــــــــــــــــــــــــــ	0
Inorganic Analytes		<i>iša 1</i> 980a,, 1,414. I 431.0	1 46.0					esuit				·	400		1 400	24.2	<u>-</u> -	200	
Aluminum	50	47.8 4.0 U	49.0 4.0 U	12.9	J 24		40.0	U,L Ü	80.0	Ü	29.6	_	100	<u>U</u>	100 J	34.2 4.0	- Ü		<u>u</u>
Antimony Arsenic							4.0	- <u>U</u>	44		4		4.0			0.6	- 0		
	2,000	2.0 U	2.0 U	42.9	U 2		2.0		0.5	<u>J</u>	0.7	J_	2.0 52.9	Ū	0.5 J 42.9	53.8		52.0	J,*
Barium				1 42.9 NA	42		43.3		42.4	 -	44.1			K					-J,*
Beryllium	NA NA	2.8 U	2.8 U		N 39		0.5	<u> </u>	1.0 294	U	1.0 308	U	1.0 372	U,L	1.0 ∪ 337.0	1.00	U	5.0 339	<u>J</u>
Cadmium	NA NA	66,700	66,500	482 NA	39 N		65.100		61 100		64,600		68,700		63,400	64.800		59,400	
Calcium				41.3											31.0				
Chromium	7,000	18.6	19.0	41.3 NA	20		23.0		36.4	J,K	36.4		22.6			22.3		18.7	
Cobalt	NA NA	4.2 U		NA NA	N		2.0	U	0.5	J,K	11.5	J,K	6.0	U		3.00 2.63	U	0.6	J,*
Copper	NA NA		1.6 J 63.2	NA NA	- N		1.3	J,L	10.5	κ,-	151		14.9	Ü	10.3 J	50.0	\	1.3	JU
Iron Lead	- NA 5	15.4 J 2.0 U			U 2		2.0	Ü	2.0	U	2.0	Ü	0.5	J,K,*	2.0 U	3.0	- U	2.0	
Magnesium	NA NA	16,900	16,600	NA NA	U -2.		16,900		16,000		16,100	U	15,700		15,600	16,100		13,900	
Manganese	NA NA	54.4	111 *	NA NA	T N		51.0		50.8		46.7		102	K	76.7	89.9		94.8	
Mercury	1 2	0.5 U			u 0 .			Ū	0.5	-U	0.5	Ū	0.5	} -	0.5 U.L	0.5	Ü	(1.5	U
Nickel	57	33.9	35.8	42.4	40		29.8		32.3		29.2	÷	43.1		35.4	42.6		33.9	5
Potassium	NA NA	3,320 J			- ;i		3,110	J,K*	3,540	К,*	4,500	К	6,610	K	2,790	3,420		3,330	 j
Selenium	NA NA	4.0 U			T N		4.0	U	4	Ü	4	- i) -	4.0		4 U	4.0	Ū	4	 ŭ -
Silver	0.1	1.7 U			U 2			IJ	4.0	Ü	4.0	Ū.	4.0	Ü	4.0 U	5.00	Ü	10.0	.— ŭ
Sodium	NA NA	79,800 K		NA NA	N N		55,900	-	46,700		49.500	-	62,100		50,100	72,700		64,700	
Thallium	0.5	2.0 U			U 2.			- -	2.0	U	1.0	Ū	1.0	U	2.0 U	2.0	U	0.4	
Vanadium	NA	17.0 U	17.0 U	NA NA	N		5.6	J	10.0	U	10.0	Ū	10.0	U	10.0 U	5.00	- ŭ	0.90	J,K
Zinc	NA	130	161	NA	N.	A	105	L	121	К	132	ĸ	180		151	218	ĸ	220	
Hexavalent Chromium	2.0	20 L	20 L	11.8	,L 10	.6 J,L	20.0		11.0	J,L	37.9	ī	13.4	J,L	20.1 J,L	21.0		14.6	
Cyanide	4		13 J	7	JE	J_	6	J	9		4	J	5		7	10	U	7_	
Volatile Organ ic Compounds			100	100 m	trows.	455 1	Ŕ	esuit	μαL	Sister'	- in (in)			S	California Canada				. 4
1,1,1-Trichloroethane	117	1.0 U	1.0 U	1.0	U 1.	0 <u>U</u>	1.0	U	1.0	U,J	1.0	U	1.0	U	1.0 U	1.0	U	1.0	U
1,1-Dichloroethane	700	1.0 U	1.0 U	1.0	J 1.	0 U	1.0	U	1.0	U	1.0	Ų	1.0	Ū	1.0 U	1.0	Ū	1.0	U
1,2-Dichloroethane	0.4	1.0 U	1.0 U	1.0	J _ 1.	0 U	1.0	٦	1.0	Ū	1.0	U	1.0	U	1.0 U	1.0	Ū	1.0	U
Benzene	1	1.0 U		1.0	U 1.	0 <u>U</u>	1.0_	Ü	1.0	U	1.0	U	1.0	Ū	1.0 U	1.0	ū	1.0	U
Chloroform	6	1.0 U			U 1.		1.0	IJ,Ĵ	1.0	U	1.0	Ų	1.0	Ū	1.0 U	1.0	U	1.0	Ū
Ethylbenzene	30	1.0 U			J 1.		1.0	_	1.0	U,J	1.0	U	1.0	Ū	1.0 U	1.0	Ū	1.0	U
m- and p-Xylenes	59	2.0 U			J 2.		2.0	U	2.0	IJ	2.0	Ų	2.0	U	2.0 U	2.0	Ū	2.0	U
o-Xylene	59	1.0 U			J 1.		1.0	C	1.0	U	1.0	U.	1.0	U	1.0 U	1.0	Ū	1.0	Ü
Toluene	100	1.0 U			J 1.		1.0	_ _	1.0	U	1.0	U	1.0	U	1.0 U	1.0	Ū	1.0	U
Trichloroethene	3	4.2	1.0 U		J 1.		2.0		1.0	7	1.2		1.2		1.9	1.6		().74	J
Vinyl Chloride	0.2	1.0 U	1.0 U	1.0	J 1.	0 U	1.0	ĹΩ	1.0	Ų	1.0	U	1.0	Ü	1.0 U	1.0	U.J	1.0	<u>U,J</u>

TABLE A-29
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR EW5

Sample Number:	Groundwater	EW5	τ	EW5	- 1	EW5		EW5		EW5		EW5		EW5		EW5		EW	/5
Sampling Date	Cleanup Goal	11/21/02	_	05/28/0	3	11/18/0		05/20/0		11/30/0		06/07/		09/12/		03/22/0		09/20	
Groundwater Elevation:	NA NA		十		-														
Well Bottom Elevation:1	NA	536.20	\top	536.20		536.20)	536.2	0	536.2	0	536.2	0	536.2	ō	536.2	0	536.	20
Portion of Glacial Unit:	NA .	NA ²	7	NA ²		NA ²		NA ²		NA ²		NA ²		NA ²		NA ²		N/A	3
pH (standard urits)	NA NA							7.54		7.65		7.75	;	7.78		8.78		7.4	9
Conductivity (m3/cm)	NA		\neg					0.770)	0.853	3	0.79	1	0.853	3	0.752	2	0.6	15
Turbidity (NTU)	NA NA		П					1.0		. 0		0		0		0		0	
Inorganic Analytes	经验 价的 电一对 。"	The same of the same		ne no etter	y Ermi	ક કહેંદું કરે ક	1	iliga sayt 🕺	Result	(µg/L)	arts in	Milke on					11	7	
Aluminum	50	48.0		10.6	J	10.6	J,L	80.0	U	100	Ų	100	U	100	U	100	Ü	200	U
Antimony	3	4.0 l	JŢ	4.0	U	4.0	U	4	U	4	U	4.0	Ū	4	Ü	4.0	U	4	U
Arsenic	0.2	2.0 l	J	2.0	U	2.0	C	2.0	U	2.0	U	2.0	υ	2.0	U	0.6	J	2.0	— ∪,*
Barium	2,000	48.9	$\neg \vdash$	50.6		52.3		51.3		53.5		61.8	K	56.4		48.8		54.2	J,*
Beryllium	NA	2.8 l	J	NA		0.5	U	1.0	U	1.0	U	1.0	U,L	1.0	U	1.00	U	5.0	U
Cadmium	4	212	Т	242		232		230		301		314		321		248		209	
Calcium	NA	62,500	Т	NA		68,200		64,500		71,300		71,200		69,300		61,400		62,000	
Chromium	7,000	18.1	\neg	19.8		22.0		28.9		26.5		28.2		27.3		24.9		20.1	
Cobalt	NA	4.2 L	7	NA		2.0	U	2.0	U	0.4	JK	1.3		0.3	J	3.00	U	0.3	J,*
Copper	NA	2.3	7	NA		3.2	L	12.1	K,*	3.2	J	2.4	J	4.5	J	4.14	J	3.1	J
Iron	NA	24.5	<u> </u>	NA	$\neg \neg$	18.1	J	23.9	J.L	27.4		28.6	K,*	22.0		26.6	J	22.3	J
Lead	5	2.0	<i></i>	2.0	U	2.0	U	2.0	Ü	2.0	U	2.0	Ü	2.0	ΰ	3.0	U	2.0	
Magnesium	NA	14,100	7	NA		16,000		15,300		16,500		15,600		16,200		14,600		15,000	
Manganese	NA	66.4	-	NA		43.4		43.8	*	41.9	* .	59.6	K	92.7	K	25.4		22.9	
Mercury	2	0.5 l	īΤ	0.5	U,L.	0.5	Ų	0.5	U	0.5	U	0.5	U	0.5	U.L.	0.5	U	0.5	U
Nickel	57	24.8	\neg	26.6		22.6		26.8	*	32.8	*	35.5	K	32.6	К	23.0	K	22.9	<u>_</u> _
Potassium	NA	3,320 J,	ĸ	NA		3,720	K,*	4,130	Κ,*	5,340	K	6,720	K	3,090	ĸ	2,700		3,080	J
Selenium	NA	4.0 l	ĴΤ	NA		4.0	Ū	4	Ū	4	U	4.0	U	4	U	4.0	U	4	U
Silver	0.1	1.7 t	11	2.0	U	4.0	Ü	4.0	U	4.0	U	4.0	U	4.0	Ü	5.00	Ū	10.0	Ų
Sodium	NA	62,300 k	\sim	NA		54,900	L	52,600		58,600	Ļ	71,000		67,400		59,300		60,200	<u>L</u>
Thallium	0.5	2.0 l	7	2.0	U	2.0	U	2.0	U	2.0	U	1.0	U	1.0	U	2.0	U	1.0	U
Vanadium	NA	17.0 l	<i>រ</i> 🕇	NA		6.5	J	10.0	U	10.0	Ü	10.0	U	10.0	U	1.70	J	0.9	J,K
Zinc	NA	18.7	<u>, †</u>	NA		7.3	J.L.	25.1	J.K	59.2		39.9		34.5	K	28.8	J	49.0	J
Hexavalent Chromium	2.0	19 1	_	13.8	J,L	21.0		17.3	J,L	18.6	L	17.2	J,L	18.4	J,L	23.8		19.4	J,*
Cyanide	4	58	,	52		50		12		18		65		56	J	73		53	J,*
Volatile Organic Compounds	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			TO THE STATE OF	14 X 15 1		· , ",		tesult	(µg/L)		<u> </u>		:		*	(d), 1		
1,1,1-Trichloroethane	117	1.0 l	ĴΤ	1.0	U	1.0	Ū	1.0	UJ	1.0	Ū	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	700	1.0 L	П	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	Ü	1.0	U
1,2-Dichloroethane	0.4	1.0 l)	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Benzene	1	1.0 U	7	1.0	U	1.0	Ū	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ū	1.0	U
Chloroform	6	1.0 U	亣	1.0	U	1.0	Ū.J	1.0	U	1.0	U	1.0	Ü	1.0	U	1.0	U	1.0	Ū
Ethylbenzene	30	1.0 U	IJ	1.0	Ū	1.0	Ü	1.0	Ū,J	1.0	Ū	1.0	Ū	1.0	Ū	1.0	U	1.0	Ū
m- and p-Xvienes	59	2.0 U		2.0	Ū	2.0	Ū	2.0	Ü	2.0	~ .	2.0	Ü	2.0	Ū	2.0	Ū	2.0	Ū
o-Xylene	59		ij	1.0	Ü	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ū	1.0	Ü	1.0	-	1.0	- -ŭ
Toluene	100		,	1.0	- U	1.0	- ŭ	1.0	- ŭ	1.0	- i i	1.0	TU TU	1.0	Ü	1.0	- Ū	1.0	- U
Trichloroethere	3	2.9	+	2.5		1.1	_ <u>~</u>	1.0	U.J	2.0	<u>_</u>	1.5		1.2		1.1	<u> </u>	2.3	
Vinvi Chloride	0.2		7	1.0	-ul	1.0	U.J	1.0	Ü	1.0	U	1.0	U	1.0	U	1.0	Ū.J	1.0	U.J

TABLE A-30
GROUNDWATER ANALYTICAL RESULTS FROM NOVEMBER 2002 TO SEPTEMBER 2006 SAMPLING EVENTS FOR EW6

Sample Number:	Groundwater	EW6	EW6	EW6	-	EW		EW	6	EW6		EW		EW6	EV	/6
Sampling Date:	Cleanup Goal	11/21/02	05/28/03	11/18/03	3	05/20/		11/30		06/07/0		09/12/05		3/22/2006	09/20/06	
Groundwater Elevation:	NA NA			7 17 10,00			<u> </u>	11700	,,,,	- 00/07/0				-		,,,,,
Well Bottom Elevation:	NA NA	532.40	532.40	532.40		532.4	0	532.	40	532,40		532,40		532.4	532	40
Portion of Glacial Unit:	NA NA	NA ²	NA ²	NA ²		NA ²		NA		NA ²		NA ²		NA ²	N/	
pH (standard units)	NA NA			<u></u> -		7.54		7.7		8.11		6.69		NA	7.	
Conductivity (rnS/cr1)	NA				_	0.75		0.70		0.596		0.649		NA	0.4	
Turbidity (NTU)	NA					1.0		Ö		0		0		NA	0	
Inorganic Analytes				141		Same Signer	Resu	t (µg/L)	- g = 44						5 5 55	pri e
Aluminum	50	45.3	24.3 U	40.0	U,L	80.0	U	50.3	J	100	U	100	U	NS	200	U
Antimony	3	4.0 U	4.0 l	4.0	C	4	U	4	U	4.0	U	4	U	NS	1	J
Arsenic	0.2	0.7 J	0.9	0.5	7	0.7	J	0.7	J	2.0	Ū	0.7	J	NS	1.0	J <u>,</u> *
Barium	2,000	55.6	59.8	53.7		_61.1		51.0		58.3	K	48.5		NS	52.3	J
Beryllium	NA	2.8 U	NA	0.1	J,K	1.0	υ	1.0	υ	1.0	Ū,L	1.0	<u> </u>	NS	5.0	υ
Cadmium	4	19.0	27.0	21.0		27.6		23.8		22.4		23.6		NS	21.8	
Calcium	NA	63,400	NA	63,200		67,900		61,600		62,800		59,700		NS	57,500	
Chromium	7,000	12.4	13.8	10.0		20.8		12.7		18.3		16.5		NS	15.1	
Cobalt	NA	4.2 U	NA	2.0	C	2.0	U	0.3	J,K,*	1.0	U	1.0	U	NS	50.0	J,*
Copper	NA	3.1 J	NA	3.1	L	2.9	J,K,*	2.5	J	2.1	J	6.0	U	NS	3.1	J
Iron	NA	110	NA	44.8		30.3	L	27.2		25.2	K,*	17.8	J	NS	17.6	<u> </u>
Lead	5	2.0 U	2.0 l		U	2.0	U	2.0	Ū	2.0	U	2.0	U,	NS	2.0	U,*
Magnesium	NA NA	14,800	NA	14,800		15,900		15,600		14,200		14,300		NS	14,200	
Manganese	NA NA	32.2 *	NA	31.4		31.0_		28.6	*	25.6	<u> K</u>	28.2		NS	25.0	
Mercury	2	0.5 U	0.5 U		C	0.5	U	0.5	U ·	0.5	U	0.5	Ų,L	NS	0.5	Ú
Nickel	57	9.2	7.9 l		J	13.3	*	12.6	K	13.2	K_	10.9		NS	9.2	!
Potassium	NA	3,030 J, K	NA	3,240	K,*	3,560	_K,*_	5,070	ĸ_	6,280	K	2,610		NS	2,700	_J_
Selenium	NA NA	4.0 U	NA	4.0	U	4	U	4	U	4.0	Ú	4	C	NS	4	U
Silver	0.1	1.7 U	2.0 L		C	4.0	Ü	4.0	<u> </u>	4.0	<u> </u>	4.0	Ü	NS	10.0	U
Sodium	NA NA	49,800 K	NA	43,100	<u>L</u>	46,300		39,100		39,300		40,100		NS	38,600	<u>l</u> _
Thallium	0.5	4.0 U	2.0 L		U	2.0	U	2.0	U	1.0	U	1.0	U	NS	1.0	U
Vanadium	NA	17.0 U	NA	5.8	<u>J</u>	10.0	U	10.0	Ū.	10.0	Ú	10.0	υ	NS	0.8	J,K
Zinc	NA	10.7 J	NA	30.0	U	30.0	U	20.6	J	11.6	J_	30.0	Ü	NS	26.5	<u>. J</u>
Hexavalent Chromium	2.0	13L	3.3 J		j	9.6	J,L	6.0		10.2	J,L	4.9	J,L	NS	12.9	J,*
Cyanide	4	38 J	30	14	الل	9		5	J	16		12		NS	12	۸٠
Volatile Organić Compounds					7.4	194 - Yv		t (µg/L)	Same Same	11, 12, 1			30 102 1	Same of the first	<u> </u>	<u> </u>
1,1,1-Trichloroethane	117	1.0 U	1.0 L		U	1.0	U,J	1.0	U	1.0	U	1.0	U	NS	1.0	U
1,1-Dichloroethaine	700	1.0 U	1.0 U		U	1.0	Ü	1.0	U	1.0	U	1.0	U	NS	1.0	U
1,2-Dichloroethane	0.4	1.0 U	1.0 L		Ü	1.0		1.0	U	1.0	U	1.0	U	NS	1.0	U
Benzene	1	1.0 U	1.0 L		U	1.0	U	1.0	U	1.0	U	1.0	Ų	NS	1.0	Ü
Chloroform	6	1.0 U	1.0 L		U,J	1.0	U	1.0	U	1.0	U	1.0	Ų	NS	1.0	Ü
Ethylbenzene	30	1.0 U	1.0 U		U	1.0	U,J	1.0	Ü	1.0	Ü	1.0	ς.	NS	1.0	U
m- and p-Xylenes	59	2.0 U	2.0 L		Ų	2.0	U	2.0	Ū	2.0	Ų	2.0	Ų	NS	2.0	U
o-Xylene	59	1.0 U	1.0 L		U	1.0	U	1.0	U	1.0	U	1.0	Ü	NS	1.0	Ū
Toluene	100	1.0 U	1.0		Ü	1.0	U	1.0	U	1.0	Ū	1.0	Ü	NS	1.0	U
Trichloroethene	3	1.0 U	1.0 L		U	1.0	Ü,J	1.0	U	1.0	<u>U</u> _	1.0	Ū	NS	0.33	J
Vinyl Chloride	0.2	1.0 U	1.0	1.0	U,J	1.0	U	1.0	U	1.0	Ü	1.0	Ū	NS	1.0	١,٠

Attachment 5

ESTIMATED ANNUAL OPERATION AND MAINTENANCE COST PEERLESS PLATING SUPERFUND SITE

MUSKEGON, MICHIGAN

Item	Unit Cost	Units	Extended Cost
Labor	Unit Cost	Units	Extended Cost
	T	<u> </u>	
Operator, hr	\$54.61	2080	\$113,589
Operator Travel	\$33.82	260	\$8,793
		Subtotal	\$122,382
Equipment/Disposables			
Computer equipment, month	\$350.00	12	\$4,200
Pallet Jack, month	\$200.00	12	\$2,400
Office supplies, month	\$100.00	12	\$1,200
Telephones/pager, month	\$150.00	12	\$1,800
Trash disposal, month	\$200.00	12	\$2,400
Grounds maintenance, month	\$250.00	12	\$3,000
Facilities maintenance, month	\$500.00	12	\$6,000
Equipment maintenance, month	\$1,200.00	12	\$14,400
		Subtotal	\$35,400
Other Direct Costs			
Sewer Discharge Costs	\$24,000.00	12	\$288,000.00
Electric, month	\$4,000.00	12	\$48,000
Gas, month	\$350.00	12	\$4,200
Water, month	\$150.00	12	\$1,800
	· · · · · · · · · · · · · · · · · · ·	Subtotal	\$342,000
		TOTAL	\$499,782

ATTACHMENT 6

EPA CONDUCTING REVIEW AT PEERLESS PLATING SUPERFUND SITE

MUSIKEGON, MICHIGAN

U.S. Environmental Protection Agency Region 5 is conducting a five-year review of the cleanup at the Peerless Plating Superfund site in Muskegon, Mich. The Superfund law requires a review at least every five years at locations where cleanup action has been started and hazardous substances remain managed on-site. These reviews are done to ensure the cleanup continues to protect human health and the environment. A review was previously done in 2002.

This review included an evaluation of background information, cleanup requirements, effectiveness of the cleanup, and any anticipated future actions. Waste discharged from the former facility contaminated underground water supplies (known as ground water) with chemicals such as TCE and PCE, while mud (sediment) in Little Black Creek was found to contain metals such as copper, zinc, chromium and cadmium.

EPA selected several cleanup actions for the site: Demolition and disposal of buildings on the property; installing a system to remove dangerous vapors from the soil; removing contaminated soil; constructing a system to treat and strip chemical contamination from the underground water; and diverting the wastewater discharge system from Little Black Creek to the local treatment plant.

This latest five-year review report should be completed by Sept. 30 and will be announced with another public notice. The report will be available at the Norton Shores Branch Library, 705 Seminole Road, Muskegon, where other site documents can also be read. The public is invited to comment on the latest five-year review. For comments or more information about the site contact:

LINDA MARTIN

Remedial Project Manager EPA Region 5 (mail code SR-6J) 77 W. Jackson Blvd. Chicago, IL 60604

(800) 621-84:31 E.xt. 63854, weekdays 10-5:30 martin.lindab@epa.gov

PUBLISH: February 28, 2007

STATE OF MICHIGAN County of Muskegon

SS.

Gary Ostrom bo	eing duly sworn deposes
and says that he is the Publisher of the MUSKI	EGON CHRONICLE, a
newspaper printed in Muskegon County and circulate	ed within the Counties of
Muskegon, Ottawa, Newaygo, Mason, and Oceana; tha	at the annexed notice was
duly printed and published in said MUSK	KEGON CHRONICLE
7 (1::	; that is to say, on
the 28th day(s) of Feltre	10/21/200 /, and
theday(s) of	$\underline{\hspace{1cm}}$ 200, and
that said publication was continued during said time	without any intermission
or omission, and that he has a personal knowledge of	the facts above set forth.
Dansen It	
	0/1
Sulfscribed and sworn to before me this	8th day
of Jelnuary A.D. 200_7.	
() Leany E	· Varsa
	Muskegon County, Mich. Notary Public State of Michigan
times, \$	Muskeoon County
	Expires 17/78/07